326 research outputs found
Towards an explanation for the 30 Dor (LMC) Honeycomb nebula - the impact of recent observations and spectral analysis
The unique Honeycomb nebula, most likely a peculiar supernova remnant, lies
in 30 Doradus in the Large Magellanic Cloud. Due to its proximity to SN1987A,
it has been serendipitously and intentionally observed at many wavelengths.
Here, an optical spectral analysis of forbidden line ratios is performed in
order to compare the Honeycomb high-speed gas with supernova remnants in the
Galaxy and the LMC, with galactic Wolf-Rayet nebulae and with the optical line
emission from the interaction zone of the SS433 microquasar and W50 supernova
remnant system. An empirical spatiokinematic model of the images and spectra
for the Honeycomb reveals that its striking appearance is most likely due to a
fortuitous viewing angle. The Honeycomb nebula is more extended in soft X-ray
emission and could in fact be a small part of the edge of a giant LMC shell
revealed for the first time in this short wavelength domain. It is also
suggested that a previously unnoticed region of optical emission may in fact be
an extension of the Honeycomb around the edge of this giant shell. A secondary
supernova explosion in the edge of a giant shell is considered for the creation
of the Honeycomb nebula. A microquasar origin of the Honeycomb nebula as
opposed to a simple supernova origin is also evaluated.Comment: 12 pages, 9 figures, accepted for publication in MNRA
The tails in the Helix Nebula NGC 7293
We have examined a stream-source model for the production of the cometary
tails observed in the Helix Nebula NGC 7293 in which a transonic or moderately
supersonic stream of ionized gas overruns a source of ionized gas. Hydrodynamic
calculations reveal velocity structures which are in good agreement with the
observational data on tail velocities and are consistent with observations of
the nebular structure. The results also are indicative of a stellar atmosphere
origin for the cometary globules. Tail remnants persist for timescales long
enough for their identification with faint striations visible in the nebula gas
to be plausible.Comment: 7 pages, 6 figures, accepted for publication in A&
The Magellanic Bridge: The Nearest Purely Tidal Stellar Population
We report on observations of the stellar populations in twelve fields
spanning the region between the Magellanic Clouds, made with the Mosaic-II
camera on the 4-meter telescope at the Cerro-Tololo Inter-American Observatory.
The two main goals of the observations are to characterize the young stellar
population (which presumably formed in situ in the Bridge and therefore
represents the nearest stellar population formed from tidal debris), and to
search for an older stellar component (which would have been stripped from
either Cloud as stars, by the same tidal forces which formed the gaseous
Bridge). We determine the star-formation history of the young inter-Cloud
population, which provides a constraint on the timing of the gravitational
interaction which formed the Bridge. We do not detect an older stellar
population belonging to the Bridge in any of our fields, implying that the
material that was stripped from the Clouds to form the Magellanic Bridge was
very nearly a pure gas.Comment: 19 pages, 9 figures. Accepted to Ap
Galactic Twins of the Ring Nebula Around SN1987A and a Possible LBV-like Phase for Sk-69 202
Some core-collapse supernovae show clear signs of interaction with dense
circumstellar material that often appears to be non-spherical. Circumstellar
nebulae around supernova progenitors provide clues to the origin of that
asymmetry in immediate pre-supernova evolution. Here I discuss outstanding
questions about the formation of the ring nebula around SN1987A and some
implications of similar ring nebulae around Galactic B supergiants. Several
clues hint that SN1987A's nebula may have been ejected in an LBV-like event,
rather than through interacting winds in a transition from a red supergiant to
a blue supergiant.Comment: 2 pages, to appear in procedings of "Massive stars: fundamental
parameters and circumstellar interactions", conference in honor of Virpi
Niemela's 70th birthda
Supernova Remnants in the Magellanic Clouds III: An X-ray Atlas of LMC Supernova Remnants
We have used archival ROSAT data to present X-ray images of thirty-one
supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). We have
classified these remnants according to their X-ray morphologies, into the
categories of Shell-Type, Diffuse Face, Centrally Brightened, Point-Source
Dominated, and Irregular. We suggest possible causes of the X-ray emission for
each category, and for individual features of some of the SNRs.Comment: 27 pages, 6 figures (9 figure files). To appear in the Supplement
Series of the Astrophysical Journal, August 1999 Vol. 123 #
Jets and the shaping of the giant bipolar envelope of the planetary nebula KjPn 8
A hydrodynamic model involving cooling gas in the stagnation region of a
collimated outflow is proposed for the formation of the giant parsec-scale
bipolar envelope that surrounds the planetary nebula KjPn 8. Analytical
calculations and numerical simulations are presented to evaluate the model. The
envelope is considered to consist mainly of environmental gas swept-up by
shocks driven by an episodic, collimated, bipolar outflow. In this model, which
we call the ``free stagnation knot'' mechanism, the swept-up ambient gas
located in the stagnation region of the bow-shock cools to produce a high
density knot. This knot moves along with the bow-shock. When the central
outflow ceases, pressurization of the interior of the envelope stops and its
expansion slows down. The stagnation knot, however, has sufficient momentum to
propagate freely further along the axis, producing a distinct nose at the end
of the lobe. The model is found to successfully reproduce the peculiar shape
and global kinematics of the giant bipolar envelope of KjPn 8.Comment: 20 pages + 8 figures (in 1 tar-file 0.67 Mb
Deep Halpha imagery of the Eridanus shells
A deep \ha image of interlocking filamentary arcs of nebulosity has been
obtained with a wide-field ( 30\degree diameter) narrow-band filter
camera combined with a CCD as a detector. The resultant mosaic of images,
extending to a galactic latitude of 65, has been corrected for field
distortions and had galactic coordinates superimposed on it to permit accurate
correlations with the most recent H{\sc i} (21 cm), X-ray (0.75 kev) and FIR
(IRAS 100 m) maps.
Furthermore, an upper limit of 0.13 arcsec/yr to the expansion proper motion
of the primary 25\degree long nebulous arc has been obtained by comparing a
recent \ha image obtained with the San Pedro Martir telescope of its
filamentary edge with that on a POSS E plate obtained in 1951.
It is concluded that these filamentary arcs are the superimposed images of
separate shells (driven by supernova explosions and/or stellar winds) rather
than the edges of a single `superbubble' stretching from Barnard's Arc (and the
Orion Nebula) to these high galactic latitudes. The proper motion measurement
argues against the primary \ha emitting arc being associated with the giant
radio loop (Loop 2) except in extraordinary circumstances.Comment: 9 pages, 5 figures, accepted for MNRAS publicatio
NGC 602 Environment, Kinematics and Origins
The young star cluster NGC 602 and its associated HII region, N90, formed in
a relatively isolated and diffuse environment in the Wing of the Small
Magellanic Cloud. Its isolation from other regions of massive star formation
and the relatively simple surrounding HI shell structure allows us to constrain
the processes that may have led to its formation and to study conditions
leading to massive star formation. We use images from Hubble Space Telescope
and high resolution echelle spectrographic data from the Anglo-Australian
Telescope along with 21-cm neutral hydrogen (HI) spectrum survey data and the
shell catalogue derived from it to establish a likely evolutionary scenario
leading to the formation of NGC 602. We identify a distinct HI cloud component
that is likely the progenitor cloud of the cluster and HII region which
probably formed in blister fashion from the cloud's periphery. We also find
that the past interaction of HI shells can explain the current location and
radial velocity of the nebula. The surrounding Interstellar Medium is diffuse
and dust-poor as demonstrated by a low visual optical depth throughout the
nebula and an average HI density of the progenitor cloud estimated at 1 cm^-3.
These conditions suggest that the NGC 602 star formation event was produced by
compression and turbulence associated with HI shell interactions. It therefore
represents a single star forming event in a low gas density region.Comment: Accepted for publication in PASP. 25 pages, 10 figure
High Resolution CO and H2 Molecular Line Imaging of a Cometary Globule in the Helix Nebula
We report high resolution imaging of a prominent cometary globule in the
Helix nebula in the CO J=1-0 (2.6 mm) and H2 v=1-0 S(1) (2.12 micron) lines.
The observations confirm that globules consist of dense condensations of
molecular gas embedded in the ionized nebula. The head of the globule is seen
as a peak in the CO emission with an extremely narrow line width (0.5 km/s) and
is outlined by a limb-brightened surface of H2 emission facing the central star
and lying within the photo-ionized halo. The emission from both molecular
species extends into the tail region. The presence of this extended molecular
emission provides new constraints on the structure of the tails, and on the
origin and evolution of the globules.Comment: 12 pages, 3 figures. To appear in The Astrophysical Journal Letter
- …