684 research outputs found
Two-photon linewidth of light "stopping" via electromagnetically induced transparency
We analyze the two-photon linewidth of the recently proposed adiabatic
transfer technique for ``stopping'' of light using electromagnetically induced
transparency (EIT). We shown that a successful and reliable transfer of
excitation from light to atoms and back can be achieved if the spectrum of the
input probe pulse lies within the initial transparency window of EIT, and if
the two-photon detuning is less than the collective coupling strength
(collective vacuum Rabi-frequency) divided by ,
with being the radiative decay rate, the effective number of atoms
in the sample, and the pulse duration. Hence in an optically thick medium
light ``storage'' and retrieval is possible with high fidelity even for systems
with rather large two-photon detuning or inhomogeneous broadening.Comment: 2 figure
Stochastic Simulation of a finite-temperature one-dimensional Bose-Gas: from Bogoliubov to Tonks-Girardeau regime
We present an ab initio stochastic method for calculating thermal properties
of a trapped, 1D Bose-gas covering the whole range from weak to strong
interactions. Discretization of the problem results in a Bose-Hubbard-like
Hamiltonian, whose imaginary time evolution is made computationally accessible
by stochastic factorization of the kinetic energy. To achieve convergence for
low enough temperatures such that quantum fluctuations are essential, the
stochastic factorization is generalized to blocks, and ideas from
density-matrix renormalization are employed. We compare our numerical results
for density and first-order correlations with analytic predictions.Comment: 5 pages, 3 figures;text added;accepted in Physical Review
Discretized vs. continuous models of p-wave interacting fermions in 1D
We present a general mapping between continuous and lattice models of Bose-
and Fermi-gases in one dimension, interacting via local two-body interactions.
For s-wave interacting bosons we arrive at the Bose-Hubbard model in the weakly
interacting, low density regime. The dual problem of p-wave interacting
fermions is mapped to the spin-1/2 XXZ model close to the critical point in the
highly polarized regime. The mappings are shown to be optimal in the sense that
they produce the least error possible for a given discretization length. As an
application we examine the ground state of a interacting Fermi gas in a
harmonic trap, calculating numerically real-space and momentum-space
distributions as well as two-particle correlations. In the analytically known
limits the convergence of the results of the lattice model to the continuous
one is shown.Comment: 7 pages, 5 figure
Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors
The advantages of light and matter-wave Sagnac interferometers -- large area
on one hand and high rotational sensitivity per unit area on the other -- can
be combined utilizing ultra-slow light in cold atomic gases. While a
group-velocity reduction alone does not affect the Sagnac phase shift, the
associated momentum transfer from light to atoms generates a coherent
matter-wave component which gives rise to a substantially enhanced rotational
signal. It is shown that matter-wave sensitivity in a large-area interferometer
can be achieved if an optically dense vapor at sub-recoil temperatures is used.
Already a noticeable enhancement of the Sagnac phase shift is possible however
with much less cooling requirements.Comment: 4 pages, 3 figure
Limitations of light delay and storage times in EIT experiments with condensates
We investigate the limitations arising from atomic collisions on the storage
and delay times of probe pulses in EIT experiments. We find that the atomic
collisions can be described by an effective decay rate that limits storage and
delay times. We calculate the momentum and temperature dependence of the decay
rate and find that it is necessary to excite atoms at a particular momentum
depending on temperature and spacing of the energy levels involved in order to
minimize the decoherence effects of atomic collisions.Comment: 4 pages RevTeX, 4 figures. Send correspondence to
[email protected]
Many-body effects on adiabatic passage through Feshbach resonances
We theoretically study the dynamics of an adiabatic sweep through a Feshbach
resonance, thereby converting a degenerate quantum gas of fermionic atoms into
a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero
temperature mean-field theory which accurately accounts for initial molecular
quantum fluctuations, triggering the association process. The structure of the
resulting semiclassical phase space is investigated, highlighting the dynamical
instability of the system towards association, for sufficiently small detuning
from resonance. It is shown that this instability significantly modifies the
finite-rate efficiency of the sweep, transforming the single-pair exponential
Landau-Zener behavior of the remnant fraction of atoms Gamma on sweep rate
alpha, into a power-law dependence as the number of atoms increases. The
obtained nonadiabaticity is determined from the interplay of characteristic
time scales for the motion of adiabatic eigenstates and for fast periodic
motion around them. Critical slowing-down of these precessions near the
instability leads to the power-law dependence. A linear power law is obtained when the initial molecular fraction is smaller than the 1/N
quantum fluctuations, and a cubic-root power law is
attained when it is larger. Our mean-field analysis is confirmed by exact
calculations, using Fock-space expansions. Finally, we fit experimental low
temperature Feshbach sweep data with a power-law dependence. While the
agreement with the experimental data is well within experimental error bars,
similar accuracy can be obtained with an exponential fit, making additional
data highly desirable.Comment: 9 pages, 9 figure
Light-induced effective magnetic fields for ultracold atoms in planar geometries
We propose a scheme to create an effective magnetic field for ultracold atoms in a planar geometry. The setup allows the experimental study of classical and quantum Hall effects in close analogy to solid-state systems including the possibility of finite currents. The present scheme is an extention of the proposal in Phys. Rev. Lett. 93, 033602 (2004), where the effective magnetic field is now induced for three-level Lambda-type atoms by two counterpropagating laser beams with shifted spatial profiles. Under conditions of electromagnetically induced transparency the atom-light interaction has a space-dependent dark state, and the adiabatic center-of-mass motion of atoms in this state experiences effective vector and scalar potentials. The associated magnetic field is oriented perpendicular to the propagation direction of the laser beams. The field strength achievable is one flux quantum over an area given by the transverse beam separation and the laser wavelength. For a sufficiently dilute gas the field is strong enough to reach the lowest Landau level regime
- …