148 research outputs found

    Anisotropic Scaling in Layered Aperiodic Ising Systems

    Full text link
    The influence of a layered aperiodic modulation of the couplings on the critical behaviour of the two-dimensional Ising model is studied in the case of marginal perturbations. The aperiodicity is found to induce anisotropic scaling. The anisotropy exponent z, given by the sum of the surface magnetization scaling dimensions, depends continuously on the modulation amplitude. Thus these systems are scale invariant but not conformally invariant at the critical point.Comment: 7 pages, 2 eps-figures, Plain TeX and epsf, minor correction

    Cutoff for the East process

    Full text link
    The East process is a 1D kinetically constrained interacting particle system, introduced in the physics literature in the early 90's to model liquid-glass transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that its mixing time on LL sites has order LL. We complement that result and show cutoff with an O(L)O(\sqrt{L})-window. The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an O(L)O(\sqrt{L})-window. The law of the process behind the front plays a crucial role: Blondel showed that it converges to an invariant measure ν\nu, on which very little is known. Here we obtain quantitative bounds on the speed of convergence to ν\nu, finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of Bolthausen ('82) implies a CLT for the location of the front, yielding the cutoff result. Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an O(1)O(1)-window.Comment: 33 pages, 2 figure

    Surface Magnetization of Aperiodic Ising Systems: a Comparative Study of the Bond and Site Problems

    Full text link
    We investigate the influence of aperiodic perturbations on the critical behaviour at a second order phase transition. The bond and site problems are compared for layered systems and aperiodic sequences generated through substitution. In the bond problem, the interactions between the layers are distributed according to an aperiodic sequence whereas in the site problem, the layers themselves follow the sequence. A relevance-irrelevance criterion introduced by Luck for the bond problem is extended to discuss the site problem. It involves a wandering exponent for pairs, which can be larger than the one considered before in the bond problem. The surface magnetization of the layered two-dimensional Ising model is obtained, in the extreme anisotropic limit, for the period-doubling and Thue-Morse sequences.Comment: 19 pages, Plain TeX, IOP macros + epsf, 6 postscript figures, minor correction

    Surface Magnetization of Aperiodic Ising Quantum Chains

    Full text link
    We study the surface magnetization of aperiodic Ising quantum chains. Using fermion techniques, exact results are obtained in the critical region for quasiperiodic sequences generated through an irrational number as well as for the automatic binary Thue-Morse sequence and its generalizations modulo p. The surface magnetization exponent keeps its Ising value, beta_s=1/2, for all the sequences studied. The critical amplitude of the surface magnetization depends on the strength of the modulation and also on the starting point of the chain along the aperiodic sequence.Comment: 11 pages, 6 eps-figures, Plain TeX, eps

    Comparison of the ICare® rebound tonometer with the Goldmann tonometer in a normal population

    Get PDF
    The aim of this study was to evaluate the accuracy of measurement of intraocular pressure (IOP) using a new induction/impact rebound tonometer (ICare) in comparison with the Goldmann applanation tonometer (AT). The left eyes of 46 university students were assessed with the two tonometers, with induction tonometry being performed first. The ICare was handled by an optometrist and the Goldmann tonometer by an ophthalmologist. In this study, statistically significant differences were found when comparing the ICare rebound tonometer with applanation tonometry (AT) (p < 0.05). The mean difference between the two tonometers was 1.34 +/- 2.03 mmHg (mean +/- S.D.) and the 95% limits of agreement were +/-3.98 mmHg. A frequency distribution of the differences demonstrated that in more than 80% of cases the IOP readings differed by <3 mmHg between the ICare and the AT. In the present population the ICare overestimates the IOP value by 1.34 mmHg on average when compared with Goldmann tonometer. Nevertheless, the ICare tonometer may be helpful as a screening tool when Goldmann applanation tonometry is not applicable or not recommended, as it is able to estimate IOP within a range of +/-3.00 mmHg in more than 80% of the populatio

    Common trends in the critical behavior of the Ising and directed walk models

    Full text link
    We consider layered two-dimensional Ising and directed walk models and show that the two problems are inherently related. The information about the zero-field thermodynamical properties of the Ising model is contained into the transfer matrix of the directed walk. For several hierarchical and aperiodic distributions of the couplings, critical exponents for the two problems are obtained exactly through renormalization.Comment: 4 pages, RevTeX file + 1 figure, epsf needed. To be published in PR

    Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces

    Full text link
    Model sets (or cut and project sets) provide a familiar and commonly used method of constructing and studying nonperiodic point sets. Here we extend this method to situations where the internal spaces are no longer Euclidean, but instead spaces with p-adic topologies or even with mixed Euclidean/p-adic topologies. We show that a number of well known tilings precisely fit this form, including the chair tiling and the Robinson square tilings. Thus the scope of the cut and project formalism is considerably larger than is usually supposed. Applying the powerful consequences of model sets we derive the diffractive nature of these tilings.Comment: 11 pages, 2 figures; dedicated to Peter Kramer on the occasion of his 65th birthda

    Radial Fredholm perturbation in the two-dimensional Ising model and gap-exponent relation

    Full text link
    We consider concentric circular defects in the two-dimensional Ising model, which are distributed according to a generalized Fredholm sequence, i. e. at exponentially increasing radii. This type of aperiodicity does not change the bulk critical behaviour but introduces a marginal extended perturbation. The critical exponent of the local magnetization is obtained through finite-size scaling, using a corner transfer matrix approach in the extreme anisotropic limit. It varies continuously with the amplitude of the modulation and is closely related to the magnetic exponent of the radial Hilhorst-van Leeuwen model. Through a conformal mapping of the system onto a strip, the gap-exponent relation is shown to remain valid for such an aperiodic defect.Comment: 12 pages, TeX file + 4 figures, epsf neede

    Local critical behaviour at aperiodic surface extended perturbation in the Ising quantum chain

    Full text link
    The surface critical behaviour of the semi--infinite one--dimensional quantum Ising model in a transverse field is studied in the presence of an aperiodic surface extended modulation. The perturbed couplings are distributed according to a generalized Fredholm sequence, leading to a marginal perturbation and varying surface exponents. The surface magnetic exponents are calculated exactly whereas the expression of the surface energy density exponent is conjectured from a finite--size scaling study. The system displays surface order at the bulk critical point, above a critical value of the modulation amplitude. It may be considered as a discrete realization of the Hilhorst--van Leeuwen model.Comment: 13 pages, TeX file + 6 figures, epsf neede

    Multidimensional Gaussian sums arising from distribution of Birkhoff sums in zero entropy dynamical systems

    Full text link
    A duality formula, of the Hardy and Littlewood type for multidimensional Gaussian sums, is proved in order to estimate the asymptotic long time behavior of distribution of Birkhoff sums SnS_n of a sequence generated by a skew product dynamical system on the T2\mathbb{T}^2 torus, with zero Lyapounov exponents. The sequence, taking the values ±1\pm 1, is pairwise independent (but not independent) ergodic sequence with infinite range dependence. The model corresponds to the motion of a particle on an infinite cylinder, hopping backward and forward along its axis, with a transversal acceleration parameter α\alpha. We show that when the parameter α/π\alpha /\pi is rational then all the moments of the normalized sums E((Sn/n)k)E((S_n/\sqrt{n})^k), but the second, are unbounded with respect to n, while for irrational α/π\alpha /\pi, with bounded continuous fraction representation, all these moments are finite and bounded with respect to n.Comment: To be published in J. Phys.
    corecore