158 research outputs found

    TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model

    Get PDF
    TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer

    Methamphetamine Increases LPS-Mediated Expression of IL-8, TNF-α and IL-1β in Human Macrophages through Common Signaling Pathways

    Get PDF
    The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers

    The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptors (TLR) are key innate immunity receptors participating in an immune response. Growing evidence suggests that mutations of TLR2/TLR9 gene are associated with the progress of cancers. The present study aimed to investigate the temporal relationship of single nucleotide polymorphisms (SNP) of TLR2/TLR9 and the risk of hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>In this single center-based case-control study, SNaPshot method was used to genotype sequence variants of TLR2 and TLR9 in 211 patients with HCC and 232 subjects as controls.</p> <p>Results</p> <p>Two synonymous SNPs in the exon of TLR2 were closely associated with risk of HCC. Compared with those carrying wild-type homozygous genotypes (T/T), risk of HCC decreased significantly in individuals carrying the heterozygous genotypes (C/T) of the rs3804099 (adjusted odds ratio (OR), 0.493, 95% CI 0.331 - 0.736, <it>P </it>< 0.01) and rs3804100 (adjusted OR, 0.509, 95% CI 0.342 - 0.759, <it>P </it>< 0.01). There was no significant association found in two TLR9 SNPs concerning the risk of HCC. The haplotype TT for TLR2 was associated significantly with the decreased risk of HCC (OR 0.524, 95% CI 0.394 - 0.697, <it>P </it>= 0.000). Inversely, the risk of HCC increased significantly in patients with the haplotype CC (OR 2.743, 95% CI 1.915 - 3.930, <it>P </it>= 0.000).</p> <p>Conclusions</p> <p>These results suggested that TLR2 rs3804099 C/T and rs3804100 C/T polymorphisms were closely associated with HCC. In addition, the haplotypes composed of these two TLR2 synonymous SNPs have stronger effects on the susceptibility of HCC.</p

    Targeted Deletion of HIF-1α Gene in T Cells Prevents their Inhibition in Hypoxic Inflamed Tissues and Improves Septic Mice Survival

    Get PDF
    Sepsis patients may die either from an overwhelming systemic immune response and/or from an immunoparalysis-associated lack of anti-bacterial immune defence. We hypothesized that bacterial superantigen-activated T cells may be prevented from contribution into anti-bacterial response due to the inhibition of their effector functions by the hypoxia inducible transcription factor (HIF-1alpha) in inflamed and hypoxic areas.Using the Cre-lox-P-system we generated mice with a T-cell targeted deletion of the HIF-1alpha gene and analysed them in an in vivo model of bacterial sepsis. We show that deletion of the HIF-1alpha gene leads to higher levels of pro-inflammatory cytokines, stronger anti-bacterial effects and much better survival of mice. These effects can be at least partially explained by significantly increased NF-kappaB activation in TCR activated HIF-1 alpha deficient T cells.T cells can be recruited to powerfully contribute to anti-bacterial response if they are relieved from inhibition by HIF-1alpha in inflamed and hypoxic areas. Our experiments uncovered the before unappreciated reserve of anti-bacterial capacity of T cells and suggest novel therapeutic anti-pathogen strategies based on targeted deletion or inhibition of HIF-1 alpha in T cells

    Association of toll-interacting protein gene polymorphisms with atopic dermatitis

    Get PDF
    BACKGROUND: Atopic dermatitis (AD) is a common inflammatory skin disorder, affecting up to 15% of children in industrialized countries. Toll-interacting protein (TOLLIP) is an inhibitory adaptor protein within the toll-like receptor (TLR) pathway, a part of the innate immune system that recognizes structurally conserved molecular patterns of microbial pathogens, leading to an inflammatory immune response. METHODS: In order to detect a possible role of TOLLIP variation in the pathogenesis of AD, we screened the entire coding sequence of the TOLLIP gene by SSCP in 50 AD patients. We identified an amino acid exchange in exon 6 (Ala222Ser) and a synonymous variation in exon 4 (Pro139Pro). Subsequently, these two variations and four additional non-coding polymorphisms (-526 C/G, two polymorphisms in intron 1 and one in the 3'UTR) were genotyped in 317 AD patients and 224 healthy controls. RESULTS: The -526G allele showed borderline association with AD in our cohort (p = 0.012; significance level after correction for multiple testing 0.0102). Haplotype analysis did not yield additional information. Evaluation of mRNA expression by quantitative real-time polymerase chain reaction in six probands with the CC and six with the GG genotype at the -526 C/G locus did not reveal significant differences between genotypes. CONCLUSION: Variation in the TOLLIP gene may play a role in the pathogenesis of AD. Yet, replication studies in other cohorts and populations are warranted to confirm these association results

    Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression.</p> <p>Methods</p> <p>Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA.</p> <p>Results</p> <p>Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and resulted in a reduction of TNF-α, IL-1β, IL-6, and COX-2 gene expression (IC<sub>50 </sub>= 2 μM) and a reduction of secreted IL-6 and PGE<sub>2 </sub>(IC<sub>50 </sub>~ 20 μM).</p> <p>Conclusion</p> <p>Curcumin and resveratrol are able to inhibit TNFα-activated NF-κB signaling in adipocytes and as a result significantly reduce cytokine expression. These data suggest that curcumin and resveratrol may provide a novel and safe approach to reduce or inhibit the chronic inflammatory properties of adipose tissue.</p

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF

    Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs

    Get PDF
    Background: Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam 3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings: Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/ mL), Pam3Cys (160 ng/mL) or LPS (1 mg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1b, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2a) and Ptgs2. MALP-2 was more potent than Pam 3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam 3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs
    corecore