445 research outputs found

    Theory of Spin-Charge Coupled Transport in a Two-Dimensional Electron Gas with Rashba Spin-Orbit Interactions

    Full text link
    We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equations capture a number of interrelated effects including spin accumulation and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be used under very general circumstances to model transport experiments in 2DEG systems that involve either electrical or optical spin injection. We comment on the relationship between these equations and the exact spin and charge density operator equations of motion. As an example of the application of our equations, we consider a simple electrical spin injection experiment and show that a voltage will develop between two ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative magnetization orientation of the contacts. This voltage is present even when the separation between the contacts is larger than the spin diffusion length.Comment: 8 pages, 1 eps figure. Corrected an error in the calculation of the spin-charge coupling coefficient, pointed out in cond-mat/0406730, added several reference

    Temperature dependence of D'yakonov-Perel' spin relaxation in zinc blende semiconductor quantum structures

    Full text link
    The D'yakonov-Perel' mechanism, intimately related to the spin splitting of the electronic states, usually dominates the spin relaxation in zinc blende semiconductor quantum structures. Previously it has been formulated for the two limiting cases of low and high temperatures. Here we extend the theory to give an accurate description of the intermediate regime which is often relevant for room temperature experiments. Employing the self-consistent multiband envelope function approach, we determine the spin splitting of electron subbands in n-(001) zinc blende semiconductor quantum structures. Using these results we calculate spin relaxation rates as a function of temperature and obtain excellent agreement with experimental data.Comment: 9 pages, 4 figure

    Slowing down of spin relaxation in two dimensional systems by quantum interference effects

    Full text link
    The effect of weak localization on spin relaxation in a two-dimensional system with a spin-split spectrum is considered. It is shown that the spin relaxation slows down due to the interference of electron waves moving along closed paths in opposite directions. As a result, the averaged electron spin decays at large times as 1/t1/t. It is found that the spin dynamics can be described by a Boltzmann-type equation, in which the weak localization effects are taken into account as nonlocal-in-time corrections to the collision integral. The corrections are expressed via a spin-dependent return probability. The physical nature of the phenomenon is discussed and it is shown that the "nonbackscattering" contribution to the weak localization plays an essential role. It is also demonstrated that the magnetic field, both transversal and longitudinal, suppresses the power tail in the spin polarization.Comment: 12 pages, 2 figure

    Exciton spin decay modified by strong electron-hole exchange interaction

    Full text link
    We study exciton spin decay in the regime of strong electron-hole exchange interaction. In this regime the electron spin precession is restricted within a sector formed by the external magnetic field and the effective exchange fields triggered by random spin flips of the hole. Using Hanle effect measurements, we demonstrate that this mechanism dominates our experiments in CdTe/(Cd,Mg)Te quantum wells. The calculations provide a consistent description of the experimental results, which is supported by independent measurements of the parameters entering the model.Comment: 5 pages, 3 figure

    Quantifying spin Hall angles from spin pumping: Experiments and Theory

    Full text link
    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permalloy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.Comment: 4 pages, 4 figure

    Long-term Dynamics of the Electron-nuclear Spin System of a Semiconductor Quantum Dot

    Full text link
    A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dynamics on the correlation time τc\tau_c of electron spin precession, with frequency Ω\Omega, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the period of electron spin precession in the nuclear field. For these and larger correlation times, the indirect hyperfine field, which acts on nuclear spins, also reaches a maximum. This maximum is of the order of the dipole-dipole magnetic field that nuclei create on each other. This value is non-zero even if the average electron polarization vanishes. It is shown that the transition from short correlation time to Ωτc>1\Omega\tau_c>1 does not affect the general structure of the equation for nuclear spin temperature and nuclear polarization in the Knight field, but changes the values of parameters, which now become functions of Ωτc\Omega\tau_c. For correlation times larger than the precession time of nuclei in the electron hyperfine field, it is found that three thermodynamic potentials (χ\chi, ξ\bm{\xi}, ς\varsigma) characterize the polarized electron-nuclear spin system. The values of these potentials are calculated assuming a sharp transition from short to long correlation times, and the relaxation mechanisms of these potentials are discussed. The relaxation of the nuclear spin potential is simulated numerically showing that high nuclear polarization decreases relaxation rate.Comment: RevTeX 4, 12 pages, 9 figure

    Spin dynamics in the regime of hopping conductivity

    Full text link
    We consider spin dynamics in the impurity band of a semiconductor with spin-split spectrum. Due to the splitting, phonon-assisted hops from one impurity to another are accompanied by rotation of the electron spin, which leads to spin relaxation. The system is strongly inhomogeneous because of exponential variation of hopping times. However, at very small couplings an electron diffuses over a distance exceeding the characteristic scale of the inhomogeneity during the time of spin relaxation, so one can introduce an averaged spin relaxation rate. At larger values of coupling the system is effectively divided into two subsystems: the one where relaxation is very fast and another one where relaxation is rather slow. In this case, spin decays due to escape of the electrons from one subsystem to another. As a result, the spin dynamics is non-exponential and hardly depends on spin-orbit coupling

    Twinning-induced formation of nanostructure in commercial-purity titanium

    Get PDF
    In the present work the influence of various parameters on formation of nano- or ultrafine-grained structure in commercial-purity titanium during large deformation was quantified using TEM and EBSD. The beneficial effect of twinning on the kinetics of microstructure refinement in titanium was revealed. It was shown that deformation twinning (and therefore nanostructure formation) can be intensified via decrease in temperature, increase in the initial grain size and decrease in the impurities content. The minimum grain size at which twinning can still operate in commercial-purity titanium was determined to be ~1μm. It was shown that rolling to a thickness strain of 93% at -196°C resulted in the formation of a microstructure with a grain/subgrain size ~80 n

    Spin dephasing and photoinduced spin diffusion in high-mobility 110-grown GaAs-AlGaAs two-dimensional electron systems

    Get PDF
    We have studied spin dephasing and spin diffusion in a high-mobility two-dimensional electron system, embedded in a GaAs/AlGaAs quantum well grown in the [110] direction, by a two-beam Hanle experiment. For very low excitation density, we observe spin lifetimes of more than 16 ns, which rapidly decrease as the pump intensity is increased. Two mechanisms contribute to this decrease: the optical excitation produces holes, which lead to a decay of electron spin via the Bir-Aranov-Pikus mechanism and recombination with spin-polarized electrons. By scanning the distance between the pump and probe beams, we observe the diffusion of spin-polarized electrons over more than 20 microns. For high pump intensity, the spin polarization in a distance of several microns from the pump beam is larger than at the pump spot, due to the reduced influence of photogenerated holes.Comment: 4 pages, 3 figure

    Self-Polarization and Dynamical Cooling of Nuclear Spins in Double Quantum Dots

    Full text link
    Spontaneous nuclear polarization is predicted in double quantum dots in the spin-blocked electron transport regime. The polarization results from an instability of the zero-polarization state when singlet and triplet electron energy levels are brought into resonance by the effective hyperfine field of the nuclei on the electrons. The nuclear spins, once polarized, serve as a cold bath for cooling electrons below the lattice (phonon) temperature. We estimate the relevant time scales and discuss the conditions necessary to observe these phenomena.Comment: 4 pages, 3 figures, updated journal versio
    corecore