778 research outputs found
Neutrino spin relaxation in medium with stochastic characteristics
The helicity evolution of a neutrino interacting with randomly moving and
polarized matter is studied. We derive the equation for the averaged neutrino
helicity. The type of the neutrino interaction with background fermions is not
fixed. In the particular case of a tau-neutrino interacting with
ultrarelativistic electron-positron plasma we obtain the expression for the
neutrino helicity relaxation rate in the explicit form. We study the neutrino
spin relaxation in the relativistic primordial plasma. Supposing that the
conversion of left-handed neutrinos into right-handed ones is suppressed at the
early stages of the Universe evolution we get the upper limit on the
tau-neutrino mass.Comment: 6 pages, RevTeX4; 2 references added; more detailed discussion of
correlation functions and cosmological neutrinos is presented; version to be
published in Int. J. Mod. Phys.
Formation of bound states of electrons in spherically symmetric oscillations of plasma
We study spherically symmetric oscillations of electrons in plasma in the
frame of classical electrodynamics. Firstly, we analyze the electromagnetic
potentials for the system of radially oscillating charged particles. Secondly,
we consider both free and forced spherically symmetric oscillations of
electrons. Finally, we discuss the interaction between radially oscillating
electrons through the exchange of ion acoustic waves. It is obtained that the
effective potential of this interaction can be attractive and can transcend the
Debye-Huckel potential. We suggest that oscillating electrons can form bound
states at the initial stages of the spherical plasma structure evolution. The
possible applications of the obtained results for the theory of natural
plasmoids are examined.Comment: 9 pages in LaTeX2e, no figures; paper was significantly modified, 2
new references added, some inessential mathematics was removed, many typos
were corrected; final variant to be published in Physica Script
Creation of Dirac neutrinos in a dense medium with time-dependent effective potential
We consider Dirac neutrinos interacting with background fermions in the frame
of the standard model. We demonstrate that a time-dependent effective potential
is quite possible in a protoneutron star (PNS) at certain stages of its
evolution. For the first time, we formulate a nonperturbative treatment of
neutrino processes in a matter with arbitrary time-dependent effective
potential. Using linearly growing effective potential, we study the typical
case of a slowly varying matter interaction potential. We calculate
differential mean numbers of pairs created from the vacuum by
this potential and find that they crucially depend on the magnitude of masses
of the lightest neutrino eigenstate. These distributions uniformly span up to
eV energies for muon and tau neutrinos created in PNS core due to the
compression just before the hydrodynamic bounce and up to eV
energies for all three active neutrino flavors created in the neutronization.
Considering different stages of the PNS evolution, we derive constraints on
neutrino masses, eV corresponding to the
nonvanishing pairs flux produced by this mechanism. We show
that one can distinguish such coherent flux from chaotic fluxes of any other
origin. Part of these neutrinos, depending on the flavor and helicity, are
bounded in the PNS, while antineutrinos of any flavor escape the PNS. If the
created pairs are , then a part of the corresponding
neutrinos also escape the PNS. The detection of and with
such low energies is beyond current experimental techniques.Comment: 18 pages, Revtex4.1, 1 eps figure, 2 columns; minimal changes,
version to be published in Phys. Rev.
Spin light of neutrino in gravitational fields
We predict a new mechanism for the spin light of neutrino () that can
be emitted by a neutrino moving in gravitational fields. This effect is studied
on the basis of the quasiclassical equation for the neutrino spin evolution in
a gravitational field. It is shown that the gravitational field of a rotating
object, in the weak-field limit, can be considered as an axial vector external
field which induces the neutrino spin procession. The corresponding probability
of the neutrino spin oscillations in the gravitational field has been derived
for the first time. The considered in this paper can be produced in the
neutrino spin-flip transitions in gravitational fields. It is shown that the
total power of this radiation is proportional to the neutrino gamma factor to
the fourth power, and the emitted photon energy, for the case of an ultra
relativistic neutrino, could span up to gamma-rays. We investigate the
caused by both gravitational and electromagnetic fields, also accounting for
effects of arbitrary moving and polarized matter, in various astrophysical
environments. In particular, we discuss the emitted by a neutrino
moving in the vicinity of a rotating neutron star, black hole surrounded by
dense matter, as well as by a neutrino propagating in the relativistic jet from
a quasar.Comment: 14 pages in LaTex with 1 eps figure; derivation of the neutrino spin
oscillations probability in gravitational fields and several clarifying notes
are added, typos correcte
Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field
We study the evolution of massive mixed Dirac and Majorana neutrinos in
matter under the influence of a transversal magnetic field. The analysis is
based on relativistic quantum mechanics. We solve exactly the evolution
equation for relativistic neutrinos, find the neutrino wave functions, and
calculate the transition probability for spin-flavor oscillations. We analyze
the dependence of the transition probability on the external fields and compare
the cases of Dirac and Majorana neutrinos. The evolution of Majorana particles
in vacuum is also studied and correction terms to the standard oscillation
formula are derived and discussed. As a possible application of our results we
discuss the spin-flavor transitions in supernovae.Comment: RevTeX4, 15 pages, 4 eps figures. The paper was significantly
revised; 17 references were added, many misprints throughout the text were
corrected. The variant to be published in Phys. Rev.
Pairing of charged particles in a quantum plasmoid
We study a quantum spherically symmetric object which is based on radial
plasma oscillations. Such a plasmoid is supposed to exist in a dense plasma
containing electrons, ions, and neutral particles. The method of creation and
annihilation operators is applied to quantize the motion of charged particles
in a self-consistent potential. We also study the effective interaction between
oscillating particles owing to the exchange of a virtual acoustic wave, which
is excited in the neutral component of plasma. It is shown that this
interaction can be attractive and result in the formation of ion pairs. We
discuss possible applications of this phenomenon in astrophysical and
terrestrial plasmas.Comment: 17 pages, no figures, two columns, LaTeX2e; paper was significantly
revised; title was changed; 16 new references were included; the discussion
on ion-acoustic waves was added to Sec. 2; Secs. 3 and 4 were shortened; a
more detailed discussion was added to Sec. 7; accepted for publication to
J.Phys.
Effective attraction between oscillating electrons in a plasmoid via acoustic waves exchange
We consider the effective interaction between electrons due to the exchange
of virtual acoustic waves in a low temperature plasma. Electrons are supposed
to participate in rapid radial oscillations forming a spherically symmetric
plasma structure. We show that under certain conditions this effective
interaction can result in the attraction between oscillating electrons and can
be important for the dynamics of a plasmoid. Some possible applications of the
obtained results to the theory of natural long-lived plasma structures are also
discussed.Comment: 14 pages in LaTeX2e, two columns, 3 eps figures; minimal changes,
some typos are corrected; version published on-line in Proc. R. Soc.
- …