3 research outputs found

    A canonical form for positive definite matrices

    Get PDF
    We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations. We use characteristic sets of short vectors and partition-backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential in the dimension n, but it is practical and more efficient than canonical forms based on Minkowski reduction

    The contact polytope of the Leech lattice

    No full text
    The contact polytope of a lattice is the convex hull of its shortest vectors. In this paper we classify the facets of the contact polytope of the Leech lattice up to symmetry. There are 1,197,362,269,604,214,277,200 many facets in 232 orbits

    Complexity and algorithms for computing Voronoi cells of lattices

    No full text
    In this paper we are concerned with finding the vertices of the Voronoi cell of a Euclidean lattice. Given a basis of a lattice, we prove that computing the number of vertices is a #P-hard problem. On the other hand we describe an algorithm for this problem which is especially suited for low dimensional (say dimensions at most 12) and for highly-symmetric lattices. We use our implementation, which drastically outperforms those of current computer algebra systems, to find the vertices of Voronoi cells and quantizer constants of some prominent lattices
    corecore