259 research outputs found
Phenomenology of the Baryon Resonance 70-plet at Large N_c
We examine the multiplet structure and decay channels of baryon resonances in
the large N_c QCD generalization of the N_c = 3 SU(6) spin-flavor 70. We show
that this ``70'', while a construct of large N_c quark models, actually
consists of five model-independent irreducible spin-flavor multiplets in the
large N_c limit. The preferred decay modes for these resonances fundamentally
depend upon which of the five multiplets to which the resonance belongs. For
example, there exists an SU(3) ``8'' of resonances that is eta-philic and
pi-phobic, and an ``8'' that is the reverse. Moreover, resonances with a strong
SU(3) ``1'' component prefer to decay via a K-bar rather than via a pi.
Remarkably, available data appears to bear out these conclusions.Comment: 26 pages, ReVTe
SU(3) Clebsch-Gordan Coefficients for Baryon-Meson Coupling at Arbitrary N_c
We present explicit formulae for the SU(3) Clebsch-Gordan coefficients that
are relevant for the couplings of large N_c baryons to mesons. In particular,
we compute the Clebsch-Gordan series for the coupling of the octet (associated
with mesons, and remains the correct representation at large N_c) to the large
N_c analogs of the baryon octet and decuplet representations.Comment: 8 pages, no figures, ReVTe
Exotic baryon multiplets at large number of colours
We generalize the usual octet, decuplet and exotic antidecuplet and higher
baryon multiplets to any number of colours Nc. We show that the multiplets fall
into a sequence of bands with O(1/Nc) splittings inside the band and
O(1)splittings between the bands characterized by "exoticness", that is the
number of extra quark-antiquark pairs needed to compose the multiplet. Each
time one adds a pair the baryon mass is increased by the same constant which
can be interpreted as a mass of a quark-antiquark pair. At the same time, we
prove that masses of exotic rotational multiplets are reliably determined at
large Nc from collective quantization of chiral solitons.Comment: 13 p., 5 figs. New section and references adde
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
Sphaleron transitions in the Minimal Standard Model and the upper bound for the Higgs Mass
We calculate the dissipation of the baryon number after the electroweak phase
transition due to thermal fluctuations above the sphaleron barrier. We consider
not only the classical Boltzmann factor but also fermionic and bosonic one-loop
contributions. We find that both bosonic and especially fermionic fluctuations
can considerably suppress the transition rate. Assuming the Langer--Affleck
formalism for this rate, the condition that an initial baryon asymmetry must
not be washed out by sphaleron transitions leads, in the Minimal Standard Model
(), to an upper bound for the Higgs mass in the range 60 to 75
GeV.Comment: 49 pages, 5 figures (uuencoded PostScript); fixing of the
renormalization scale has been improved, numerics has been extende
Measurement of the F2 structure function in deep inelastic ep scattering using 1994 data from the ZEUS detector at HERA
We present measurements of the structure function \Ft\ in e^+p scattering at HERA in the range 3.5\;\Gevsq < \qsd < 5000\;\Gevsq. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At \qsd < 35 \;\Gevsq the range in x now spans 6.3\cdot 10^{-5} < x < 0.08 providing overlap with measurements from fixed target experiments. At values of Q^2 above 1000 GeV^2 the x range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic urray, W
- …