7 research outputs found

    Minimum-phase property and reconstruction of elastodynamic dereverberation matrix operators

    No full text
    Minimum-phase properties are well-understood for scalar functions where they can be used as physical constraint for phase reconstruction. Existing scalar applications of the latter in geophysics include, for example the reconstruction of transmission from acoustic reflection data, or multiple elimination via the augmented acoustic Marchenko method. We review scalar minimum-phase reconstruction via the conventional Kolmogorov relation, as well as a less-known factorization method. Motivated to solve practice-relevant problems beyond the scalar case, we investigate (1) the properties and (2) the reconstruction of minimum-phase matrix functions. We consider a simple but non-trivial case of 2 × 2 matrix response functions associated with elastodynamic wavefields. Compared to the scalar acoustic case, matrix functions possess additional freedoms. Nonetheless, the minimum-phase property is still defined via a scalar function, that is a matrix possesses a minimum-phase property if its determinant does. We review and modify a matrix factorization method such that it can accurately reconstruct a 2 × 2 minimum-phase matrix function related to the elastodynamic Marchenko method. However, the reconstruction is limited to cases with sufficiently small differences between P- and S-wave traveltimes, which we illustrate with a synthetic example. Moreover, we show that the minimum-phase reconstruction method by factorization shares similarities with the Marchenko method in terms of the algorithm and its limitations. Our results reveal so-far unexplored matrix properties of geophysical responses that open the door towards novel data processing tools. Last but not least, it appears that minimum-phase matrix functions possess additional, still-hidden properties that remain to be exploited, for example for phase reconstruction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Applied Geophysics and Petrophysic

    Towards understanding the impact of the evanescent elastodynamic mode coupling in Marchenko equation-based demultiple methods

    No full text
    Marchenko equation-based methods promise data-driven, true-amplitude internal multiple elimination. The method is exact in 1-D acoustic media, however it needs to be expanded to account for the presence of 2- and 3-D elastodynamic wave-field phenomena, such as compressional (P) to shear (S) mode conversions, total reflections or evanescent waves. Mastering high waveform-fidelity methods such as this, could further advance amplitude vs offset analysis and lead to improved reservoir characterization. This method-expansion may comprise of re-evaluating the underlying assumptions and/or appending the scheme with additional constraints (e.g. minimum phase). To do that, one may need to better understand the construction of the Marchenko equation solutions, the so-called focusing functions, in a mathematically simple and numerically stable fashion. The latter could be a challenge at large angles of incidence where the elastodynamic effects and evanescent waves start playing a dominant role. We demonstrate that the elastodynamic focusing functions are the bridge between the Marchenko equation theory and the transfer matrix formalism. Using the latter, we show how we can try to gain further insights into how time-reversal (correlations) behaves when either of the elastic modes becomes evanescent. We also show how this construction allows us to shed light on into the mathematical properties of elastodynamic inverse transmissions, which takes us a step closer towards understanding the elastodynamic minimum phase reconstruction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Applied Geophysics and Petrophysic

    Internal multiple elimination: Can we trust an acoustic approximation?

    No full text
    Correct handling of strong elastic, internal, multiples remains a challenge for seismic imaging. Methods aimed at eliminating them are currently limited by monotonicity violations, a lack of a-priori knowledge about mode conversions, or unavailability of multi-component sources and receivers for not only particle velocities but also the traction vector. Most of these challenges vanish in acoustic media such that Marchenko-equation-based methods are able in theory to remove multiples exactly (within a certain wavenumber-frequency band). In practice, however, when applied to (elastic) field data, mode conversions are unaccounted for. Aiming to support a recently published marine field data study, we build a representative synthetic model. For this setting, we demonstrate that mode conversions can have a substantial impact on the recovered multiple-free reflection response. Nevertheless, the images are significantly improved by acoustic multiple elimination. Moreover, after migration the imprint of elastic effects is considerably weaker and unlikely to alter the seismic interpretation.Accepted Author ManuscriptApplied Geophysics and PetrophysicsImPhys/Medical Imagin

    The propagator and transfer matrix for a 3D inhomogeneous dissipative acoustic medium, expressed in Marchenko focusing functions

    No full text
    Standard Marchenko redatuming and imaging schemes neglect evanescent waves and are based on the assumption that decomposition into downgoing and upgoing waves is possible in the subsurface. Recently we have shown that propagator matrices, which circumvent these assumptions, can be expressed in terms of Marchenko focusing functions. In this paper we generalize the relation between the propagator matrix and the Marchenko focusing functions for a 3D inhomogeneous dissipative medium. Moreover, for the same type of medium we discuss a relation between the transfer matrix and the Marchenko focusing functions.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Applied Geophysics and Petrophysic

    Quantum computer-assisted global optimization in geophysics illustrated with stack-power maximization for refraction residual statics estimation

    No full text
    Much of recent progress in geophysics can be attributed to the adaptation of heterogeneous high-performance computing architectures. It is projected that the next major leap in many areas of science, and hence hopefully in geophysics too, will be due to the emergence of quantum computers. Finding a right combination of hardware, algorithms, and a use case, however, proves to be a very challenging task - especially when looking for a relevant application that scales efficiently on a quantum computer and is difficult to solve using classical means. We find that maximizing stack power for residual statics correction, an NP-hard combinatorial optimization problem, appears to naturally fit a particular type of quantum computing known as quantum annealing. We express the underlying objective function as a quadratic unconstrained binary optimization, which is a quantum-native formulation of the problem. We choose some solution space and define a proper encoding to translate the problem variables into qubit states. We find that these choices can have a significant impact on the maximum problem size that can fit on the quantum annealer and on the fidelity of the final result. To improve the latter, we embed the quantum optimization step in a hybrid classical-quantum workflow, which aims to increase the frequency of finding the global, rather than some local, optimum of the objective function. Finally, we find that a generic, black-box, hybrid classical-quantum solver also could be used to solve stack-power maximization problems proximal to industrial relevance and capable of surpassing deterministic solvers prone to cycle skipping. A custom-built workflow capable of solving larger problems with an even higher robustness and greater control of the user appears to be within reach in the very near future. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Numerical Analysi

    Robust estimation of primaries by sparse inversion and Marchenko equation-based workflow for multiple suppression in the case of a shallow water layer and a complex overburden: A 2D case study in the Arabian Gulf

    No full text
    Suppression of surface-related and internal multiples is an outstanding challenge in seismic data processing. The former is particularly difficult in shallow water, whereas the latter is problematic for targets buried under complex, highly scattering overburdens. We have developed a two-step, amplitude- and phase-preserving, inversion-based workflow that addresses these problems. We apply robust estimation of primaries by sparse inversion (R-EPSI) to solve simultaneously for the surface-related primaries Green’s function and the source wavelet. A significant advantage of the inversion approach of the R-EPSI method is that it does not rely on an adaptive subtraction step that typically limits other demultiple methods such as surface-related multiple elimination. The resulting Green’s function is used as the input to a Marchenko equation-based approach to predict the complex interference pattern of all overburden-generated internal multiples at once. In this approach, no a priori information about the subsurface is needed. In theory, the interbed multiples can be predicted with correct amplitude and phase and, again, no adaptive filters are required. We illustrate this workflow by applying it on an Arabian Gulf field data example. It is crucial that all preprocessing steps are performed in an amplitude-preserving way to restrict any impact on the accuracy of the multiple prediction. In practice, some minor inaccuracies in the processing flow may end up as prediction errors for which corrections will be needed. Hence, we conclude that the use of conservative adaptive filters were necessary to obtain the best results after interbed multiple removal. The obtained results indicate promising suppression of surface-related and interbed multiples.Accepted Author ManuscriptApplied Geophysics and PetrophysicsImPhys/Medical Imagin

    Marchenko redatuming, imaging and multiple elimination, and their mutual relations

    No full text
    With the Marchenko method it is possible to retrieve Green's functions between virtual sources in the subsurface and receivers at the surface from reflection data at the surface and focusing functions. A macro model of the subsurface is needed to estimate the first arrival; the internal multiples are retrieved entirely from the reflection data. The retrieved Green's functions form the input for redatuming by multidimensional deconvolution (MDD). The redatumed reflection response is free of internal multiples related to the overburden. Alternatively, the redatumed response can be obtained by applying a second focusing function to the retrieved Green's functions. This process is called Marchenko redatuming by double focusing. It is more stable and better suited for an adaptive implementation than Marchenko redatuming by MDD, but it does not eliminate the multiples between the target and the overburden. An attractive efficient alternative is plane-wave Marchenko redatuming, which retrieves the responses to a limited number of plane-wave sources at the redatuming level. In all cases, an image of the subsurface can be obtained from the redatumed data, free of artefacts caused by internal multiples. Another class of Marchenko methods aims at eliminating the internal multiples from the reflection data, while keeping the sources and receivers at the surface. A specific characteristic of this form of multiple elimination is that it predicts and subtracts all orders of internal multiples with the correct amplitude, without needing a macro subsurface model. Like Marchenko redatuming, Marchenko multiple elimination can be implemented as an MDD process, a double dereverberation process, or an efficient plane-wave oriented process. We systematically discuss the different approaches to Marchenko redatuming, imaging and multiple elimination, using a common mathematical framework.Accepted Author ManuscriptImPhys/Medical ImagingApplied Geophysics and Petrophysic
    corecore