13 research outputs found
Novel insights into the Pathophysiology of Group II Pulmonary Hypertension Impact on the pulmonary vasculature and right ventricle
This thesis describes novel insights into pathophysiological mechanisms in pulmonary hypertension as a result of problems of the left heart. The author investigated why some patients deteriorate, even when the initial cause of the disease is cured. Furthermore, several pharmacotherapeutic approaches to stop the deterioration were tested
Endovascular procedures cause transient endothelial injury but do not disrupt mature neointima in Drug Eluting Stents
Extensive application of coronary intravascular procedures has led to the increased need of understanding the injury inflicted to the coronary arterial wall. We aimed to investigate acute and prolonged coronary endothelial injury as a result of guidewire use, repeated intravascular imaging and stenting. These interventions were performed in swine (N = 37) and injury was assessed per coronary segment (n = 81) using an Evans Blue dye-exclusion-test. Scanning electron microscopy and light microscopy were then used to visualize the extent and nature of acute (<4 hours) and prolonged (5 days) endothelial injury. Guidewire and imaging injury was mainly associated with denudation and returned to control levels at 5 days. IVUS and OCT combined (Evans Blue staining 28 ± 16%) did not lead to more acute injury than IVUS alone (33 ± 15%). Stent placement caused most injury (85 ± 4%) and despite early stent re-endothelialization at 5 days, the endothelium proved highly permeable (97 ± 4% at 5 days; p < 0.001 vs acute). Imaging of in-stent neointima at 28 days after stent placement did not lead to neointimal rupture. Guidewire, IVUS and OCT induce acute endothelial cell damage, which does not increase during repeated imaging, and heals within 5 days. Interestingly, endothelial permeability increases 5 days post stenting despite near complete re-endothelialization
Perturbations in myocardial perfusion and oxygen balance in swine with multiple risk factors
Comorbidities of ischemic heart disease, including diabetes mellitus (DM), hypercholesterolemia (HC) and chronic kidney disease (CKD), are associated with coronary microvascular dysfunction (CMD). Increasing evidence suggests that CMD may contribute to myocardial âIschemia and No Obstructive Coronary Artery diseaseâ (INOCA). In the present study, we tested the hypothesis that CMD results in perturbations in myocardial perfusion and oxygen delivery using a novel swine model with multiple comorbidities. DM (streptozotocin), HC (high-fat diet) and CKD (renal embolization) were induced in 10 female swine (DM + HC + CKD), while 12 healthy female swine on a normal diet served as controls (Normal). After 5Â months, at a time when coronary atherosclerosis was still negligible, myocardial perfusion, metabolism, and function were studied at rest and during treadmill exercise. DM + HC + CKD animals showed hyperglycemia, hypercholesterolemia, and impaired kidney function. During exercise, DM + HC + CKD swine demonstrated perturbations in myocardial blood flow and oxygen delivery, necessitating a higher myocardial oxygen extractionâachieved despite reduced capillary densityâresulting in lower coronary venous oxygen levels. Moreover, myocardi
Intervening with the Nitric Oxide Pathway to Alleviate Pulmonary Hypertension in Pulmonary Vein Stenosis
Pulmonary hypertension (PH) as a result of pulmonary vein stenosis (PVS) is extremely
difficult to treat. The ideal therapy should not target the high-pressure/low-flow (HP/LF) vasculature
that drains into stenotic veins, but only the high-pressure/high-flow (HP/HF) vasculature draining into
unaffected pulmonary veins, reducing vascular resistance and pressure without risk of pulmonary
oedema. We aimed to assess the activity of the nitric oxide (NO) pathway in PVS during the
development of PH, and investigate whether interventions in the NO pathway differentially affect
vasodilation in the HP/HF vs. HP/LF territories. Swine underwent pulmonary vein banding
(PVB; n = 7) or sham surger
The effect of bioresorbable vascular scaffold implantation on distal coronary endothelial function in dyslipidemic swine with and without diabetes
Background: We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM + HFD). Methods: Five DM + HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >. 5. mm proximal and distal to the scaffold and corresponding control segments of non-scaffolded coronary arteries, as well as segments of small arteries within the flow-territories of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Results: Conduit segments proximal and distal to the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p <. 0.01), with distal segments being most prominently affected (p <. 0.01). Endothelial dysfunction was only observed in DM + HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p <. 0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM + HFD swine, and did not appear to be either NO- or EDHF-mediated. Conclusions: Six months of BVS implantation in DM + HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients
Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine
Passive, isolated postâcapillary pulmonary hypertension (IpcPH) secondary to left heart disease may progress to combined preâ and postâcapillary or âactiveâ PH (CpcPH) characterized by chronic pulmonary vascular constriction and remodelling. The mechanisms underlying this âactivationâ of passive pulmonary hypertension (PH) remain incompletely understood. Here we investigated the role of the vasoconstrictor endothelinâ1 (ET) in the progression from IpcPH to CpcPH in a swine model for postâcapillary PH. Swine underwent pulmonary vein banding (PVB; n = 7) or shamâsurgery (Sham; n = 6) and were chronically instrumented 4 weeks later. Haemodynamics were assessed for 8 weeks, at rest and during exercise, before and after administration of the ET receptor antagonist tezosentan. After sacrifice, the pulmonary vasculature was investigated by histology, RTâqPCR and myograph experiments. Pulmonary arterial pressure and resistance increased significantly over time. mRNA expression of preproâendothelinâ1 and endothelin converting enzymeâ1 in the lung was increased,
Cardiac remodelling in a swine model of chronic thromboembolic pulmonary hypertension: comparison of right vs. left ventricle
Key points: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The changes in right and left ventricle gene expression that contribute to ventricular remodelling are incompletely investigated. RV remodelling in our CTEPH swine model is associated with increased expression of the genes involved in inflammation (TGFÎČ), oxidative stress (ROCK2, NOX1 and NOX4), and apoptosis (BCL2 and caspase-3). Alterations in ROCK2 expression correlated inversely with RV contractile reserve during exercise. Since ROCK2 has been shown to be involved in hypertrophy, oxidative stress, fibrosis and endothelial dysfunction, ROCK2 inhibition may present a viable therapeutic target in CTEPH. Abstract: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The present study investigated whether the increased cardiac afterload is associated with (i) cardiac remodelling and hypertrophic signalling; (ii) changes in angiogenic factors and capillary density; and (iii) inflammatory changes associated with oxidative stress and interstitial fibrosis. CTEPH was induced in eight chronically instrumented swine by chronic nitric oxide synthase inhibition and up to five weekly pulmonary embolizations. Nine healthy swine served as a control. After 9Â weeks, RV function was assessed by single beat analysis of RVâpulmonary artery (PA) coupling at rest and during exercise, as well as by cardiac magnetic resonance imaging. Subsequently, the heart was excised and RV and left ventricle (LV) tissues were processed for molecular and histological analyses. Swine with CTEPH exhibited significant RV hypertrophy in response to the elevated PA pressure. RVâPA coupling was significantly reduced, correlated inversely with pulmonary vascular resistance and did not increase during exercise in CTEPH swine. Expression of genes associated with hypertroph
Neoatherosclerosis development following bioresorbable vascular scaffold implantation in diabetic and non-diabetic swine
Background: DM remains a risk factor for poor outcome after stent-implantation, but little is known if and how DM affects the vascular response to BVS. Aim: The aim of our study was to examine coronary responses to bioresorbable vascular scaffolds (BVS) in swine with and without diabetes mellitus fed a âfast-foodâ diet (FF-DM and FF-NDM, respectively) by sequential optical coherence tomography (OCT)-imaging and histology. Methods: Fifteen male swine were evaluated. Eight received streptozotocin-injection to induce DM. After 9 months (M), 32 single BVS were implanted in epicardial arteries with a stent to artery (S/A)-ratio of 1.1:1 under quantitative coronary angiography (QCA) and OCT guidance. Lumen, scaffold, neointimal coverage and composition were assessed by QCA, OCT and near-infrared spectroscopy (NIRS) pre- and/or post-procedure, at 3M and 6M. Additionally, polarization-sensitive (PS)-OCT was performed in 7 swine at 6M. After sacrifice at 3M and 6M, histology and polymer degradation analysis were performed. Results: Late lumen loss was high (~60%) within the first 3M after BVS-implantation (P0.20). Neointimal coverage was highly heterogeneous in all swine (DM vs. NDM P>0.05), with focal lipid accumulation, irregular collagen distribution and neointimal calcification. Likewise, polymer mass loss was low (~2% at 3M, ~5% at 6M;P>0.20) and not associated with DM or inflammation. Conclusion: Scaffold coverage showed signs of neo-atherosclerosis in all FF-DM and FF-NDM swine, scaffold polymer was preserved and the vascular response to BVS was not influenced by diabetes
Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening
Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction