14 research outputs found

    A Comprehensive Analysis of Blockchain Applications for Securing Computer Vision Systems

    Full text link
    Blockchain (BC) and Computer Vision (CV) are the two emerging fields with the potential to transform various sectors.The ability of BC can help in offering decentralized and secure data storage, while CV allows machines to learn and understand visual data. This integration of the two technologies holds massive promise for developing innovative applications that can provide solutions to the challenges in various sectors such as supply chain management, healthcare, smart cities, and defense. This review explores a comprehensive analysis of the integration of BC and CV by examining their combination and potential applications. It also provides a detailed analysis of the fundamental concepts of both technologies, highlighting their strengths and limitations. This paper also explores current research efforts that make use of the benefits offered by this combination. The effort includes how BC can be used as an added layer of security in CV systems and also ensure data integrity, enabling decentralized image and video analytics using BC. The challenges and open issues associated with this integration are also identified, and appropriate potential future directions are also proposed

    A Demand Forecasting Framework With Stagewise, Piecewise, and Pairwise Selection Techniques

    No full text
    We propose an innovative electricity demand forecasting framework based on three model-selection techniques to maximize the forecasting accuracy. In the framework, we forecast the day-ahead electricity demand every 15 minutes based on temperature and cloud data, which are sampled from 35 weather stations. We develop three progressive techniques for selecting the model and data. First, using a stagewise forward technique, we select highly-correlated weather stations and group the best combination of selected stations. Second, using a piecewise series technique, we select the best performing forecasting machine every hour by comparing the forecasting accuracy of four forecasting machines. Third, we develop a pairwise mapping technique to combine two tandem forecasting models at the smaller sampling interval when the sampling intervals of weather and demand data differ. We verify that the framework based on three selection techniques results in higher forecasting accuracy using data from the 2018 RTE demand forecasting competition held in France

    Load and Wind Power Scenario Generation Through the Generalized Dynamic Factor Model

    No full text

    Spatial and Temporal Day-Ahead Total Daily Solar Irradiation Forecasting: Ensemble Forecasting Based on the Empirical Biasing

    No full text
    Total daily solar irradiation for the next day is forecasted through an ensemble of multiple machine learning algorithms using forecasted weather scenarios from numerical weather prediction (NWP) models. The weather scenarios were predicted at grid points whose longitudes and latitudes are integers, but the total daily solar irradiation was measured at non-integer grid points. Therefore, six interpolation functions are used to interpolate weather scenarios at non-integer grid points, and their performances are compared. Furthermore, when the total daily solar irradiation for the next day is forecasted, many data trimming techniques, such as outlier detection, input data clustering, input data pre-processing, and output data post-processing techniques, are developed and compared. Finally, various combinations of these ensemble techniques, different NWP scenarios, and machine learning algorithms are compared. The best model is to combine multiple forecasting machines through weighted averaging and to use all NWP scenarios

    Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model

    No full text
    The deterministic methods generally used to solve DC optimal power flow (OPF) do not fully capture the uncertainty information in wind power, and thus their solutions could be suboptimal. However, the stochastic dynamic AC OPF problem can be used to find an optimal solution by fully capturing the uncertainty information of wind power. That uncertainty information of future wind power can be well represented by the short-term future wind power scenarios that are forecasted using the generalized dynamic factor model (GDFM)—a novel multivariate statistical wind power forecasting model. Furthermore, the GDFM can accurately represent the spatial and temporal correlations among wind farms through the multivariate stochastic process. Fully capturing the uncertainty information in the spatially and temporally correlated GDFM scenarios can lead to a better AC OPF solution under a high penetration level of wind power. Since the GDFM is a factor analysis based model, the computational time can also be reduced. In order to further reduce the computational time, a modified artificial bee colony (ABC) algorithm is used to solve the AC OPF problem based on the GDFM forecasting scenarios. Using the modified ABC algorithm based on the GDFM forecasting scenarios has resulted in better AC OPF’ solutions on an IEEE 118-bus system at every hour for 24 h

    A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming

    No full text
    The purpose of this paper is to apply multistage stochastic programming to the transmission line expansion planning problem, especially when uncertain demand scenarios exist. Since the problem of transmission line expansion planning requires an intensive computational load, dual decomposition is used to decompose the problem into smaller problems. Following this, progressive hedging and proximal bundle methods are used to restore the decomposed solutions to the original problems. Mixed-integer linear programming is involved in the problem to decide where new transmission lines should be constructed or reinforced. However, integer variables in multistage stochastic programming (MSSP) are intractable since integer variables are not restored. Therefore, the branch-and-bound algorithm is applied to multistage stochastic programming methods to force convergence of integer variables.In addition, this paper suggests combining progressive hedging and dual decomposition in stochastic integer programming by sharing penalty parameters. The simulation results tested on the IEEE 30-bus system verify that our combined model sped up the computation and achieved higher accuracy by achieving the minimised cost
    corecore