22 research outputs found

    A novel de novo Myocilin variant in a patient with sporadic juvenile open angle glaucoma

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Glaucoma is a leading cause of irreversible blindness. Pathogenic variants in the Myocilin gene (MYOC) cause juvenile open angle glaucoma (JOAG) in 8-36% of cases, and display an autosomal dominant inheritance with high penetrance. Molecular diagnosis is important for early identification as therapies are effective in minimizing vision loss and MYOC variants can be associated to severe glaucoma. MYOC variants are usually inherited, however a fifth of carriers do not report a family history. The occurrence of de novo MYOC variants is currently unknown. CASE PRESENTATION: In this study we investigated a 14 year old male Caucasian patient diagnosed with JOAG, and no family history of glaucoma. A novel probably deleterious MYOC:p.(Pro254Leu) variant was identified in the index case. This variant was not present in the parents or the siblings. CONCLUSION: This is the second report of a de novo MYOC variant in a sporadic case of JOAG and it is currently unknown if this mechanism occurs more frequently. This finding emphasizes the importance of screening individuals with JOAG for MYOC mutations irrespective of a negative family history

    Primary congenital glaucoma due to paternal uniparental isodisomy of chromosome 2 and CYP1B1 deletion

    Get PDF
    © 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.Background: CYP1B1 variants and deletions are the most common cause of primary congenital glaucoma (PCG). Methods: We investigated an individual with PCG from the Australian and New Zealand Registry of Advanced Glaucoma. We performed sequencing of the CYP1B1 gene, followed by Multiplex Ligation-dependent Probe Amplification and SNP array. Results: We identified a homozygous deletion of the CYP1B1 gene by Multiplex Ligation-dependent Probe Amplification and confirmed that the father was heterozygous for a CYP1B1 deletion but the mother had normal gene copy number. SNP array identified paternal uniparental isodisomy of the entire chromosome 2. Conclusions: This study is the first report of a homozygous CYP1B1 whole gene deletion due to paternal uniparental isodisomy of chromosome 2 as a cause of PCG. These results illustrate the importance of genetic testing in providing appropriate genetic counseling regarding the risks of recurrence

    CYP1B1 copy number variation is not a major contributor to primary congenital glaucoma

    Get PDF
    This article is published under a Creative Commons Attribution-NonCommercial-NoDerivatives License 3.0, or CC BY-NC-ND 3.0 (see http://creativecommons.org/licenses/by-nc-nd/3.0/ for license terms). The authors retain copyright and grant Molecular Vision an irrevocable, royalty-free, perpetual license to publish and distribute the article, in all formats now known or later developed, and to identify Molecular Vision as the original publisher.Purpose: To evaluate the prevalence and the diagnostic utility of testing for CYP1B1 copy number variation (CNV) in primary congenital glaucoma (PCG) cases unexplained by CYP1B1 point mutations in The Australian and New Zealand Registry of Advanced Glaucoma. Methods: In total, 50 PCG cases either heterozygous for disease-causing variants or with no CYP1B1 sequence variants were included in the study. CYP1B1 CNV was analyzed by Multiplex Ligation-dependent Probe Amplification (MLPA). Results: No deletions or duplications were found in any of the cases. Conclusion: This is the first study to report on CYP1B1 CNV in PCG cases. Our findings show that this mechanism is not a major contributor to the phenotype and is of limited diagnostic utility

    Biallelic CPAMD8 Variants Are a Frequent Cause of Childhood and Juvenile Open-Angle Glaucoma

    Get PDF
    © 2020 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND licensePurpose Developmental abnormalities of the ocular anterior segment in some cases can lead to ocular hypertension and glaucoma. CPAMD8 is a gene of unknown function recently associated with ocular anterior segment dysgenesis, myopia, and ectopia lentis. We sought to assess the contribution of biallelic CPAMD8 variants to childhood and juvenile open-angle glaucoma. Design Retrospective, multicenter case series. Participants A total of 268 probands and their relatives with a diagnosis of childhood or juvenile open-angle glaucoma. Purpose Developmental abnormalities of the ocular anterior segment in some cases can lead to ocular hypertension and glaucoma. CPAMD8 is a gene of unknown function recently associated with ocular anterior segment dysgenesis, myopia, and ectopia lentis. We sought to assess the contribution of biallelic CPAMD8 variants to childhood and juvenile open-angle glaucoma. Methods Patients underwent a comprehensive ophthalmic assessment, with DNA from patients and their relatives subjected to genome, exome, or capillary sequencing. CPAMD8 RNA expression analysis was performed on tissues dissected from cadaveric human eyes. Main Outcome Measures Diagnostic yield within a cohort of childhood and juvenile open-angle glaucoma, prevalence and risk of ophthalmic phenotypes, and relative expression of CPAMD8 in the human eye. Results We identified rare (allele frequency < 4×10−5) biallelic CPAMD8 variants in 5.7% (5/88) of probands with childhood glaucoma and 2.1% (2/96) of probands with juvenile open-angle glaucoma. When including family members, we identified 11 individuals with biallelic variants in CPAMD8 from 7 unrelated families. Nine of these individuals were diagnosed with glaucoma (9/11, 81.8%), with a mean age at diagnosis of 9.22±14.89 years, and all individuals with glaucoma required 1 or more incisional procedures to control high intraocular pressure. Iris abnormalities were observed in 9 of 11 individuals, cataract was observed in 8 of 11 individuals (72.7%), and retinal detachment was observed in 3 of 11 individuals (27.3%). CPAMD8 expression was highest in neural crest–derived tissues of the adult anterior segment, suggesting that CPAMD8 variation may cause malformation or obstruction of key drainage structures. Conclusions Biallelic CPAMD8 variation was associated with a highly heterogeneous phenotype and in our cohorts was the second most common inherited cause of childhood glaucoma after CYP1B1 and juvenile open-angle glaucoma after MYOC. CPAMD8 sequencing should be considered in the investigation of both childhood and juvenile open-angle glaucoma, particularly when associated with iris abnormalities, cataract, or retinal detachment

    Autosomal dominant nanophthalmos and high hyperopia associated with a C-terminal frameshift variant in MYRF

    Get PDF
    Made available with a Creative Commons Attribution-NonCommercial-NoDerivatives License 3.0, or CC BY-NC-ND 3.0 (see http://creativecommons.org/licenses/by-nc-nd/3.0/ for license terms). Copyright (2019) The authors.Purpose: Nanophthalmos is a rare subtype of microphthalmia associated with high hyperopia and an increased risk of angle-closure glaucoma. We investigated the genetic cause of nanophthalmos and high hyperopia in an autosomal dominant kindred. Methods: A proband with short axial length, high hyperopia, and dextrocardia was subjected to exome sequencing. Human and rodent gene expression data sets were used to investigate the expression of relevant genes. Results: We identified a segregating heterozygous frameshift variant at the 3′ end of the penultimate exon of MYRF. Using Myc-MYRF chromatin immunoprecipitation data from rat oligodendrocytes, MYRF was found to bind immediately upstream of the transcriptional start site of Tmem98, a gene that itself has been implicated in autosomal dominant nanophthalmos. MYRF and TMEM98 were found to be expressed in the human retina, with a similar pattern of expression across several dissected human eye tissues. Conclusions: C-terminal variants in MYRF, which are expected to escape nonsense-mediated decay, represent a rare cause of autosomal dominant nanophthalmos with or without dextrocardia or congenital diaphragmatic hernia

    PAX6 molecular analysis and genotype–phenotype correlations in families with aniridia from Australasia and Southeast Asia

    Get PDF
    Creative Commons Attribution-NonCommercial-NoDerivatives License 3.0, or CC BY-NC-ND 3.0 (see http://creativecommons.org/licenses/by-nc-nd/3.0/ for license terms)Purpose Aniridia is a congenital disorder caused by variants in the PAX6 gene. In this study, we assessed the involvement of PAX6 in patients with aniridia from Australasia and Southeast Asia. Methods Twenty-nine individuals with aniridia from 18 families originating from Australia, New Caledonia, Cambodia, Sri Lanka, and Bhutan were included. The PAX6 gene was investigated for sequence variants and analyzed for deletions with multiplex ligation-dependent probe amplification. Results We identified 11 sequence variants and six chromosomal deletions, including one in mosaic. Four deleterious sequence variants were novel: p.(Pro81HisfsTer12), p.(Gln274Ter), p.(Ile29Thr), and p.(Met1?). Ocular complications were associated with a progressive loss of visual function as shown by a visual acuity ≤ 1.00 logMAR reported in 65% of eyes. The prevalence of keratopathy was statistically significantly higher in the Australasian cohort (78.6%) compared with the Southeast Asian cohort (9.1%, p=0.002). Variants resulting in protein truncating codons displayed limited genotype–phenotype correlations compared with other variants. Conclusions PAX6 variants and deletions were identified in 94% of patients with aniridia from Australasia and Southeast Asia. This study is the first report of aniridia and variations in PAX6 in individuals from Cambodia, Sri Lanka, Bhutan, and New Caledonia, and the largest cohort from Australia

    PAX6 molecular analysis and genotype–phenotype correlations in families with aniridia from Australasia and Southeast Asia

    Get PDF
    Creative Commons Attribution-NonCommercial-NoDerivatives License 3.0, or CC BY-NC-ND 3.0 (see http://creativecommons.org/licenses/by-nc-nd/3.0/ for license terms)Purpose Aniridia is a congenital disorder caused by variants in the PAX6 gene. In this study, we assessed the involvement of PAX6 in patients with aniridia from Australasia and Southeast Asia. Methods Twenty-nine individuals with aniridia from 18 families originating from Australia, New Caledonia, Cambodia, Sri Lanka, and Bhutan were included. The PAX6 gene was investigated for sequence variants and analyzed for deletions with multiplex ligation-dependent probe amplification. Results We identified 11 sequence variants and six chromosomal deletions, including one in mosaic. Four deleterious sequence variants were novel: p.(Pro81HisfsTer12), p.(Gln274Ter), p.(Ile29Thr), and p.(Met1?). Ocular complications were associated with a progressive loss of visual function as shown by a visual acuity ≤ 1.00 logMAR reported in 65% of eyes. The prevalence of keratopathy was statistically significantly higher in the Australasian cohort (78.6%) compared with the Southeast Asian cohort (9.1%, p=0.002). Variants resulting in protein truncating codons displayed limited genotype–phenotype correlations compared with other variants. Conclusions PAX6 variants and deletions were identified in 94% of patients with aniridia from Australasia and Southeast Asia. This study is the first report of aniridia and variations in PAX6 in individuals from Cambodia, Sri Lanka, Bhutan, and New Caledonia, and the largest cohort from Australia

    Student Attitudes Contribute to the Effectiveness of a Genomics CURE

    Get PDF
    The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits. While the GEP CURE produces positive outcomes overall, the students with more positive attitudes toward science, particularly with respect to epistemic beliefs, showed greater gains. The findings indicate the importance of a student\u27s epistemic beliefs to achieving positive learning outcomes
    corecore