5 research outputs found

    Effect of annealing on mechanical and morphological properties of Poly(L-lactic acid)/Hydroxyapatite composite as material for 3D printing of bone tissue growth stimulating implants

    Get PDF
    In this work, effect of additional annealing on mechanical and morphological properties of 3D-printed PLLA/HAp composite scaffolds of three compositions (12.5, 25, and 50 wt.% of HAp) was investigated. Morphology and Young's modulus of 3D-printed scaffolds were investigated by scanning electron microscopy and nanoindentation. It has been shown that additional annealing does not have an effect on the homogeneous distribution of HAp powder in the PLLA-matrix. Results of nanoindentation showed growth of Young's modulus after annealing. The maximum value of 9393 Β± 709 MPa Young's modulus was reached for the annealed composite with 50 wt.% of HAp

    Porous CaP Coatings Formed by Combination of Plasma Electrolytic Oxidation and RF-Magnetron Sputtering

    No full text
    The porous CaP subcoating was formed on the Ti6Al4V titanium alloy substrate by plasma electrolytic oxidation (PEO). Then, upper coatings were formed by radio frequency magnetron sputtering (RFMS) over the PEO subcoating by the sputtering of various CaP powder targets: β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), Mg-substituted β-tricalcium phosphate (Mg-β-TCP) and Mg-substituted hydroxyapatite (Mg-HA), Sr-substituted β-tricalcium phosphate (Sr-β-TCP) and Sr-substituted hydroxyapatite (Sr-HA). The coating surface morphology was studied by scanning electron and atomic force microscopy. The chemical composition was determined by X-ray photoelectron spectroscopy. The phase composition of the coatings was studied by X-ray diffraction analysis. The Young’s modulus of the coatings was studied by nanoindentation test. RF-magnetron sputtering treatment of PEO subcoating resulted in multileveled roughness, increased Ca/P ratio and Young’s modulus and enrichment with Sr and Mg. Sputtering of the upper layer also helped to adjust the coating crystallinity

    Polyether Ether Ketone Coated with Ultra-Thin Films of Titanium Oxide and Zirconium Oxide Fabricated by DC Magnetron Sputtering for Biomedical Application

    No full text
    Recently, polyether ether ketone has raised increasing interest in research and industry as an alternative material for bone implants. This polymer also has some shortcomings, as it is bioinert and its surface is relatively hydrophobic, causing poor cell adhesion and therefore slow integration with bone tissue. In order to improve biocompatibility, the surface of polyether ether ketone-based implants should be modified. Therefore, polished disc-shaped polyether ether ketone samples were surface-modified by direct current magnetron sputtering with ultrathin titanium and zirconium coatings (thickness < 100 nm). The investigation results show a uniform distribution of both types of coatings on the sample surfaces, where the coatings mostly consist of titanium dioxide and zirconium dioxide. Differential scanning calorimetry revealed that the crystalline structure of the polyether ether ketone substrates was not changed by the coating deposition. Both coatings are amorphous, as shown by X-ray diffraction investigations. The roughness of both coating types increases with increasing coating thickness, which is beneficial for cell colonization. The coatings presented and investigated in this study improve wettability, increasing surface energies, in particular the polar component of the surface energies, which, in turn, are important for cell adhesion
    corecore