84 research outputs found

    Mitotic Spindle Poles are Organized by Structural and Motor Proteins in Addition to Centrosomes

    Get PDF
    The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420–425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly

    The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles

    Get PDF
    Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression

    Searching for the middle ground: mechanisms of chromosome alignment during mitosis

    Get PDF
    The contributions of key molecules predicted to align chromosomes at the center of the mitotic spindle have been recently examined. New results dictate that models for how chromosomes align during the early stages of mitosis must be revised to integrate properties of microtubule-based motor proteins as well as microtubule dynamics

    Analysis of Mitotic Microtubule-Associated Proteins Using Mass Spectrometry Identifies Astrin, a Spindle-Associated Protein

    Get PDF
    We purified microtubules from a mammalian mitotic extract and obtained an amino acid sequence from each microtubule-associated protein by using mass spectrometry. Most of these proteins are known spindle-associated components with essential functional roles in spindle organization. We generated antibodies against a protein identified in this collection and refer to it as astrin because of its association with astral microtubule arrays assembled in vitro. Astrin is approximately 134 kDa, and except for a large predicted coiled-coil domain in its C-terminal region it lacks any known functional motifs. Astrin associates with spindle microtubules as early as prophase where it concentrates at spindle poles. It localizes throughout the spindle in metaphase and anaphase and associates with midzone microtubules in anaphase and telophase. Astrin also localizes to kinetochores but only on those chromosomes that have congressed. Deletion analysis indicates that astrin\u27s primary spindle-targeting domain is at the C terminus, although a secondary domain in the N terminus can target some of the protein to spindle poles. Thus, we have generated a comprehensive list of major mitotic microtubule-associated proteins, among which is astrin, a nonmotor spindle protein

    The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK

    Get PDF
    Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that altered microtubule assembly (nocodazole), eliminated kinetochore–microtubule attachment (loss of Nuf2), or stabilized microtubule plus ends at kinetochores (loss of MCAK). Thus, two KinI motors, MCAK and Kif2a, play distinct roles in mitosis, and MCAK activity at kinetochores must be balanced by Kif2a activity at poles for spindle bipolarity. These treatments failed to restore bipolarity to cells lacking the activity of the kinesin Eg5. Thus, two independent pathways contribute to spindle bipolarity, with the Eg5-dependent pathway using motor force to drive spindle bipolarity and the Kif2a-dependent pathway relying on microtubule polymer dynamics to generate force for spindle bipolarity

    Examining the link between chromosomal instability and aneuploidy in human cells

    Get PDF
    Solid tumors can be highly aneuploid and many display high rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). In principle, aneuploidy is the consequence of CIN, but the relationship between CIN and aneuploidy has not been clearly defined. In this study, we use live cell imaging and clonal cell analyses to evaluate the fidelity of chromosome segregation in chromosomally stable and unstable human cells. We show that improper microtubule–chromosome attachment (merotely) is a cause of chromosome missegregation in unstable cells and that increasing chromosome missegregation rates by elevating merotely during consecutive mitoses generates CIN in otherwise stable, near-diploid cells. However, chromosome missegregation compromises the proliferation of diploid cells, indicating that phenotypic changes that permit the propagation of nondiploid cells must combine with elevated chromosome missegregation rates to generate aneuploid cells with CIN

    NuMA Assembles Into an Extensive Filamentous Structure When Expressed in the Cell Cytoplasm

    Get PDF
    NuMA is a 236 kDa protein that participates in the organization of the mitotic spindle despite its strict localization in the nucleus during interphase. To test how cells progress through mitosis when NuMA is localized in the cytoplasm instead of the nucleus, we have deleted the nuclear localization sequence of NuMA using site-directed mutagenesis and transiently expressed this mutant protein (NuMA-DeltaNLS) in BHK-21 cells. During interphase, NuMA-DeltaNLS accumulates in the cytoplasm as a large mass approximately the same size as the cell nucleus. When cells enter mitosis, NuMA-DeltaNLS associates normally with the mitotic spindle without causing any apparent deleterious effects on the progression of mitosis. Examination of the cytoplasmic mass formed by NuMA-DeltaNLS using transmission electron microscopy (TEM) revealed an extensive network of approximately 5 nm filaments that are further organized by the presence of dynamic microtubules into a dense web of solid, approximately 23 nm cables. Using flow cytometry, we have isolated the intact filamentous mass formed by NuMA-DeltaNLS from lysates of transiently transfected cells. These isolated structures are constructed of networks of interconnected 5 nm filaments and are composed exclusively of NuMA. These data demonstrate that NuMA is capable of assembling into an extensive filamentous structure supporting the possibility that NuMA serves a structural function either in the nucleus during interphase or at the polar ends of the mitotic spindle

    Phosphorylation Regulates the Assembly of Numa in a Mammalian Mitotic Extract

    Get PDF
    NuMA is a 236 kDa nuclear protein that is required for the organization of the mitotic spindle. To determine how NuMA redistributes in the cell during mitosis, we have examined the behavior of NuMA in a mammalian mitotic extract under conditions conducive to the reassembly of interphase nuclei. NuMA is a soluble protein in mitotic extracts prepared from synchronized cultured cells, but forms insoluble structures when the extract becomes non-mitotic (as judged by the inactivation of cdc2/cyclin B kinase and the disappearance of mpm-2-reactive antigens). These NuMA-containing structures are irregularly shaped particles of 1–2 microm in diameter and their assembly is specific because other nuclear components such as the lamins remain soluble in the extract under these conditions. NuMA is dephosphorylated during this assembly process, and the assembly of these NuMA-containing structures is catalyzed by protein dephosphorylation because protein kinase inhibitors enhance their formation and protein phosphatase inhibitors block their formation. Finally, immunodepletion demonstrates that NuMA is an essential structural component of these insoluble particles, and electron microscopy shows that the particles are composed of a complex interconnected network of foci. These results demonstrate that phosphorylation regulates the solubility of NuMA in a mammalian mitotic extract, and the spontaneous assembly of NuMA into extensive structures upon dephosphorylation supports the conclusion that NuMA serves a structural function

    STAG2 Promotes Error Correction in Mitosis by Regulating Kinetochore–Microtubule Attachments

    Get PDF
    Mutations in the STAG2 gene are present in ∼20% of tumors from different tissues of origin. STAG2 encodes a subunit of the cohesin complex, and tumors with loss-of-function mutations are usually aneuploid and display elevated frequencies of lagging chromosomes during anaphase. Lagging chromosomes are a hallmark of chromosomal instability (CIN) arising from persistent errors in kinetochore-microtubule (kMT) attachment. To determine whether the loss of STAG2 increases the rate of formation of kMT attachment errors or decreases the rate of their correction, we examined mitosis in STAG2-deficient cells. STAG2 depletion does not impair bipolar spindle formation or delay mitotic progression. Instead, loss of STAG2 permits excessive centromere stretch along with hyperstabilization of kMT attachments. STAG2-deficient cells display mislocalization of Bub1 kinase, Bub3 and the chromosome passenger complex. Importantly, strategically destabilizing kMT attachments in tumor cells harboring STAG2 mutations by overexpression of the microtubule-destabilizing enzymes MCAK (also known as KIF2C) and Kif2B decreased the rate of lagging chromosomes and reduced the rate of chromosome missegregation. These data demonstrate that STAG2 promotes the correction of kMT attachment errors to ensure faithful chromosome segregation during mitosis

    LGN Blocks the Ability of NuMA to Bind and Stabilize Microtubules A Mechanism for Mitotic Spindle Assembly Regulation

    Get PDF
    AbstractLGN is closely related to a Drosophila protein, Partner of inscuteable (Pins), which is required for polarity establishment and asymmetric cell divisions during embryonic development [1–3]. In mammalian cells, LGN binds with high affinity to the C-terminal tail of NuMA, a large nuclear protein that is required for spindle organization, and accumulates at the spindle poles during mitosis [4–9]. LGN also regulates spindle organization, possibly through inhibition of NuMA function [10], but the mechanism of this effect has not yet been understood. Using mammalian cells, frog egg extracts, and in vitro assays, we now show that a small domain within the C terminus of NuMA stabilizes microtubules (MTs), and that LGN blocks stabilization. The nuclear localization signal adjacent to this domain is not involved in stabilization. NuMA can interact directly with MTs, and the MT binding domain on NuMA overlaps by ten amino acid residues with the LGN binding domain. We therefore propose that a simple steric exclusion model can explain the inhibitory effect of LGN on NuMA-dependent mitotic spindle organization
    corecore