7 research outputs found

    Coupled analysis of non-contacting profiled finger seals taking into account friction effects

    Get PDF
    A computational model for coupled fluid-structure interaction analysis taking into account friction contacts is developed to study lifting capability and leakage performance of non-contacting finger seals. A cyclic finger seal segment consisting of one low-pressure finger, halves of two high-pressure fingers, front and back plates is considered. Compressible air flow in the finger seal is modeled using a computational fluid dynamics approach. A non-linear three-dimensional solid model takes into account friction contacts between the fingers and seal plates

    The Effects of Enhanced Ultraviolet-B Radiation on Leaf Photosynthesis and Submicroscopic Structures in <i>Mangifera indica</i> L. cv. ‘Tainong No 1’

    No full text
    Objective: In the future, the stress of enhanced UV-B radiation on the Earth will first affect the photosynthesis of plants, including mangoes. Therefore, it is necessary to study the effects of enhanced UV-B radiation on the photosynthesis of mangoes. Methods: ‘Tainong No 1’ mango trees in the field were selected as the experimental material and divided into 2 groups: one group was shined under 96 kJ·m−2·d−1 UV-B lamps for artificially simulated treatment of enhanced UV-B radiation, and the other group was shined under sunshine directly as the control (CK). The main photosynthetic physiological indicators were measured with conventional methods, and the expression levels of the genes encoding large and small subunits of the Rubisco enzyme were measured with fluorescent qPCR. The changes in stomatal morphology and chloroplast structure were observed with scanning electron microscopy and transmission electron microscopy. Results: The content of malondialdehyde (MDA) and the relative conductivity in the leaves of the treatment tended to be significantly higher than those of the CK. The net photosynthetic rate (Pn) of the treatment tended to decrease and be lower than that of CK. The dynamics of intercellular CO2 concentration (Ci) of the treatment and CK changed differently from each other but generally tended to decrease, and that of the treatment tended to be significantly higher than that of CK. The stomatal conductance (Gs) of the treatment and CK both generally decreased, and that of the treatment was always significantly lower than that of CK. The contents of chlorophyll a, chlorophyll b and total chlorophyll and the ratio of chlorophyll a/b of the treatment were lower than those of CK, while the carotenoid content showed the opposite trend. The stomata and the surface of leaves of the treatment were sunken and damaged, respectively. The palisade tissue, spongy tissue and upper epidermis thickened more, and the total thickness significantly increased. Meanwhile, the ratio of palisade tissue to spongy tissue decreased. During treatment, the chloroplasts were swollen and shortened, the number of chloroplasts was reduced, the starch grains were degraded, and the grana lamella were distorted, loosely arranged and blurred. The expression of the genes encoding the Rubisco large subunit (rbcL) in the treatment was significantly inhibited, while that encoding the Rubisco small subunit (rbcS) decreased first and increased later. In conclusion, 96 kJ·m−2·d−1 enhanced UV-B radiation treatment caused damage to the leaf cell membrane system. This led to stomatal limitation of photosynthesis by destroying the stomatal structure and nonstomatal limitation of photosynthesis by damaging the submicrostructure of the chloroplasts and downregulating the expression of rbcL. The leaves may resist the photosynthetic damage caused by enhanced UV-B radiation by upregulating rbcS expression as much as possible

    Transcriptome Analysis on the Underlying Physiological Mechanism of Calcium and Magnesium Resolving “Sugar Receding” in ‘Feizixiao’ Litchi Pulp

    No full text
    The sugar contents of ‘Feizixiao’ litchi (Litchi chinensis Sonn.) decrease at full maturity; calcium (Ca) and magnesium (Mg) foliar fertilizer can resolve this “sugar receding”. To investigate the physiological mechanism of Ca and Mg foliar fertilizer used to resolve the “sugar receding” phenomenon in ‘Feizixiao’ litchi pulp, 16-year-old litchi trees were treated with 0.3% CaCl2 + 0.3% MgCl2 foliar spraying or water as a control. We determined the pulp sugar content over a two-year period in 2020 and 2021. Pulp total RNA was extracted for transcriptome sequencing in 2020, and the expression pattern of 10 differentially expressed genes (DEGs) was verified by real-time PCR in 2020 and 2021. The results showed that the fertilizer treatment significantly increased pulp fructose and total soluble sugar contents at maturity in both years. According to Gene Ontology (GO) functional enrichment analysis, there were 155 DEGs divided into 35 GO categories, among which 49 DEGs were divided into 49 pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We isolated sugar-metabolism-related enzyme genes, including sucrose synthase (SS), acid invertase (AI), neutral invertase (NI), sucrose phosphate synthase (SPS), and hexokinase (HK). All sucrose-metabolism-related enzyme (NI, AI, SS, SPS) genes were downregulated, and six of the seven HK genes were downregulated. The expression patterns of the 10 DEGs were verified by real-time PCR, which showed significant linear relationships (r2020 = 0.9127, r2021 = 0.8705). In conclusion, the fertilizer treatment inhibited the synthesis of sucrose and phosphorylation of hexose by downregulating the expression of the SS, SPS, and HK genes, thus increasing the fructose and total soluble sugar contents in ‘Feizixiao’ litchi

    Transcriptome Analysis on the Underlying Physiological Mechanism of Calcium and Magnesium Resolving &ldquo;Sugar Receding&rdquo; in &lsquo;Feizixiao&rsquo; Litchi Pulp

    No full text
    The sugar contents of &lsquo;Feizixiao&rsquo; litchi (Litchi chinensis Sonn.) decrease at full maturity; calcium (Ca) and magnesium (Mg) foliar fertilizer can resolve this &ldquo;sugar receding&rdquo;. To investigate the physiological mechanism of Ca and Mg foliar fertilizer used to resolve the &ldquo;sugar receding&rdquo; phenomenon in &lsquo;Feizixiao&rsquo; litchi pulp, 16-year-old litchi trees were treated with 0.3% CaCl2 + 0.3% MgCl2 foliar spraying or water as a control. We determined the pulp sugar content over a two-year period in 2020 and 2021. Pulp total RNA was extracted for transcriptome sequencing in 2020, and the expression pattern of 10 differentially expressed genes (DEGs) was verified by real-time PCR in 2020 and 2021. The results showed that the fertilizer treatment significantly increased pulp fructose and total soluble sugar contents at maturity in both years. According to Gene Ontology (GO) functional enrichment analysis, there were 155 DEGs divided into 35 GO categories, among which 49 DEGs were divided into 49 pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We isolated sugar-metabolism-related enzyme genes, including sucrose synthase (SS), acid invertase (AI), neutral invertase (NI), sucrose phosphate synthase (SPS), and hexokinase (HK). All sucrose-metabolism-related enzyme (NI, AI, SS, SPS) genes were downregulated, and six of the seven HK genes were downregulated. The expression patterns of the 10 DEGs were verified by real-time PCR, which showed significant linear relationships (r2020 = 0.9127, r2021 = 0.8705). In conclusion, the fertilizer treatment inhibited the synthesis of sucrose and phosphorylation of hexose by downregulating the expression of the SS, SPS, and HK genes, thus increasing the fructose and total soluble sugar contents in &lsquo;Feizixiao&rsquo; litchi
    corecore