7 research outputs found

    Field Trials towards Integrating Smart Houses with the Smart Grid

    No full text
    Summary. Treating homes, offices and commercial buildings as intelligently networked collaborations can contribute to enhancing the efficient use of energy. When smart houses are able to communicate, interact and negotiate with both customers and energy devices in the local grid, the energy consumption can be better adapted to the available energy supply, especially when the proportion of variable renewable generation is high. Several efforts focus on integrating the smart houses and the emerging smart grids. We consider that a highly heterogeneous infrastructure will be in place and no one-size-fits-all solution will prevail. Therefore, we present here our efforts focusing not only on designing a framework that will enable the gluing of various approaches via a service-enabled architecture, but also discuss on the trials of these. Key words: smart grid, web service, smart metering

    Field trials towards integrating smart houses with the smart grid

    No full text
    \u3cp\u3eTreating homes, offices and commercial buildings as intelligently networked collaborations can contribute to enhancing the efficient use of energy. When smart houses are able to communicate, interact and negotiate with both customers and energy devices in the local grid, the energy consumption can be better adapted to the available energy supply, especially when the proportion of variable renewable generation is high. Several efforts focus on integrating the smart houses and the emerging smart grids. We consider that a highly heterogeneous infrastructure will be in place and no one-size-fits-all solution will prevail. Therefore, we present here our efforts focusing not only on designing a framework that will enable the gluing of various approaches via a service-enabled architecture, but also discuss on the trials of these.\u3c/p\u3

    Monitoring and control for energy efficiency in the smart house

    No full text
    \u3cp\u3eThe high heterogeneity in smart house infrastructures as well as in the smart grid poses several challenges when it comes into developing approaches for energy efficiency. Consequently, several monitoring and control approaches are underway, and although they share the common goal of optimizing energy usage, they are fundamentally different at design and operational level. Therefore, we consider of high importance to investigate if they can be integrated and, more importantly, we provide common services to emerging enterprise applications that seek to hide the existing heterogeneity. We present here our motivation and efforts in bringing together the PowerMatcher, BEMI and the Magic system.\u3c/p\u3

    Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion

    No full text
    Thesis (Ph.D.)--University of Washington, 2017In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green’s functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated
    corecore