16 research outputs found

    A SENSITIVE METHOD FOR SALIVA DETECTION IN FORENSICS USING SALIVARY AMYLASE COUPLED WITH AMPLEX RED OXIDATION

    Get PDF
    A new sensitive method for saliva detection was developed, based on salivary amylase detection but with a final fluorescent product, which increases its sensitivity. After the starch is degraded due to the presence of salivary amylase, glucose is oxidised and generates hydrogen peroxide which is able to transform Amplex Red in resorufin - a highly fluorescent product. The final product is visible both under normal and UV light. The method is fast, accurate, can detect trace amounts of saliva and shows little to no interference with other body fluids. A further increase in sensitivity could be obtained by using horseradish peroxidase in the final step, but this would also lead to an increased background signal and stronger interference with urine

    DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection

    No full text
    International audienc

    Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters

    No full text
    Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed

    Optimization of heteroduplex analysis for the detection of BRCA mutations and SNPs

    No full text
    BRCA1 and BRCA2 are tumour suppressor genes whose mutant phenotypes predispose to breast and ovarian cancer. Screening for mutations in these genes is now standard practice for hereditary breast and ovarian cancer (HBOC) cases in Europe, and permits medical follow-up and genetic counselling adapted to the needs of individuals in such families. Currently, most laboratories performing diagnostic analysis of the BRCA genes use PCR of exons and intron-exon boundaries coupled to a pre-screening step to identify anomalous amplicons. The techniques employed for the detection of mutations and SNPs have evolved over time and vary in sensitivity, specificity and cost-effectiveness. As a variant for pre-screening techniques, we chose the recently developed SurveyorÂź heteroduplex cleavage method as a sensitive and specific technique to reveal anomalous amplicons of the BRCA genes, using only basic laboratory equipment and agarose gel electrophoresis. Here we present the detection of either mutations or SNPs within the BRCA1 exon 7, using heteroduplex analysis (HA) by mismatch-specific endonuclease, confirmed by dideoxy sequencing

    Synergistic Effect of Low Molecular Weight Polyethylenimine and Polyethylene Glycol Components in Dynamic Nonviral Vector Structure, Toxicity, and Transfection Efficiency

    No full text
    When studying polyethylenimine derivatives as nonviral vectors for gene delivery, among the important issues to be addressed are high toxicity, low transfection efficiency, and nucleic acid polyplex condensation. The molecular weight of polyethylenimine, PEGylation, biocompatibility and, also, supramolecular structure of potential carrier can all influence the nucleic acid condensation behavior, polyplex size, and transfection efficiency. The main challenge in building an efficient carrier is to find a correlation between the constituent components, as well as the synergy between them, to transport and to release, in a specific manner, different molecules of interest. In the present study, we investigated the synergy between components in dynamic combinatorial frameworks formed by connecting PEGylated squalene, poly-(ethyleneglycol)-bis(3-aminopropyl) and low molecular weight polyethylenimine components to 1,3,5-benzenetrialdehyde, via reversible imine bond, applying a dynamic combinatorial chemistry approach. We report comparative structural and morphological data, DNA binding affinity, toxicity and transfection efficiency concerning the ratio of polyethylenimine and presence or absence of poly-(ethyleneglycol)-bis(3-aminopropyl) in composition of dynamic combinatorial frameworks. In vitro biological assessments have revealed the fact that nonviral vectors containing poly-(ethyleneglycol)-bis(3-aminopropyl) and the lowest amount of polyethylenimine have significant transfection efficiency at N/P 50 ratio and display insignificant cytotoxicity on the HeLa cell line

    Biocompatible Self-Assembled Hydrogen-Bonded Gels Based on Natural Deep Eutectic Solvents and Hydroxypropyl Cellulose with Strong Antimicrobial Activity

    No full text
    Natural deep eutectic solvents (NADES)-hydroxypropyl cellulose (HPC) self-assembled gels with potential for pharmaceutical applications are prepared. FT-IR, 1HNMR, DSC, TGA and rheology measurements revealed that hydrogen bond acceptor–hydrogen bond donor interactions, concentration of NADES and the water content influence significantly the physico-chemical characteristics of the studied gel systems. HPC-NADES gel compositions have thermal stabilities lower than HPC and higher than NADES components. Thermal transitions reveal multiple glass transitions characteristic of phase separated systems. Flow curves evidence shear thinning (pseudoplastic) behavior. The flow curve shear stress vs. shear rate were assessed by applying Bingham, Herschel–Bulkley, Vocadlo and Casson rheological models. The proposed correlations are in good agreement with experimental data. The studied gels evidence thermothickening behavior due to characteristic LCST (lower critical solution temperature) behavior of HPC in aqueous systems and a good biocompatibility with normal cells (human gingival fibroblasts). The order of antibacterial and antifungal activities (S.aureus, E.coli, P. aeruginosa and C. albicans) is as follows: citric acid >lactic acid > urea > glycerol, revealing the higher antibacterial and antifungal activities of acids

    The Cytotoxic Properties of Some Tricyclic 1,3-Dithiolium Flavonoids

    No full text
    Background: Due to the emergence of multidrug resistant microorganisms, new classes of antibiotics are needed. In this paper, we present the cytotoxic effects of five tricyclic flavonoids, one of which was previously identified as a potent antimicrobial agent. Methods: All five derivatives were tested against human HOS and MCF7 cancer cell lines using a wound scratch assay. The cytotoxic properties of previously reported flavonoid 4a were also evaluated using the standard MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) and live/dead assays, using NHDF, HOS and MCF7 cell lines. Results: All five derivatives were found to inhibit to some degree the proliferation of cancer cells. 4a was also found to be less toxic towards regular versus cancerous human cells. Moreover, the minimum bactericidal concentration of 4a against Staphylococcus aureus was found to be non-toxic for any of the tested human cell lines. Conclusions: Derivative 4a has the potential of being used as a therapeutic agent against certain microorganisms. Further structure optimization is required for use against tumors

    Biocompatible Chitosan-Based Hydrogels for Bioabsorbable Wound Dressings

    No full text
    Supramolecular hydrogels based on chitosan and monoaldehydes are biomaterials with high potential for a multitude of bioapplications. This is due to the proper choice of the monoaldehyde that can tune the hydrogel properties for specific practices. In this conceptual framework, the present paper deals with the investigation of a hydrogel as bioabsorbable wound dressing. To this aim, chitosan was cross-linked with 2-formylphenylboronic acid to yield a hydrogel with antimicrobial activity. FTIR, NMR, and POM procedures have characterized the hydrogel from a structural and supramolecular point of view. At the same time, its biocompatibility and antimicrobial properties were also determined in vitro. Furthermore, in order to assess the bioabsorbable character, its biodegradation was investigated in vitro in the presence of lysosome in media of different pH, mimicking the wound exudate at different stages of healing. The biodegradation was monitored by gravimetrical measurements, SEM microscopy and fractal analyses of the images. The fractal dimension values and the lacunarity of SEM pictures were accurately calculated. All these successful investigations led to the conclusion that the tested materials are at the expected high standards
    corecore