6 research outputs found

    Charge-4e supercurrent in an InAs-Al superconductor-semiconductor heterostructure

    Full text link
    Superconducting qubits with intrinsic noise protection offer a promising approach to improve the coherence of quantum information. Crucial to such protected qubits is the encoding of the logical quantum states into wavefunctions with disjoint support. Such encoding can be achieved by a Josephson element with an unusual charge-4e supercurrent emerging from the coherent transfer of pairs of Cooper-pairs. In this work, we demonstrate the controlled conversion of a conventional charge-2e dominated to a charge-4e dominated supercurrent in a superconducting quantum interference device (SQUID) consisting of gate-tunable planar Josephson junctions (JJs). We investigate the ac Josephson effect of the SQUID and measure a dominant photon emission at twice the fundamental Josephson frequency together with a doubling of the number of Shapiro steps, both consistent with the appearance of charge-4e supercurrent. Our results present a step towards novel protected superconducting qubits based on superconductor-semiconductor hybrid materials

    Gate Tunable Josephson Diode in Proximitized InAs Supercurrent Interferometers

    Full text link
    The Josephson diode (JD) is a non-reciprocal circuit element that supports a larger critical current in one direction compared to the other. This effect has gained a growing interest because of promising applications in superconducting electronic circuits with low power consumption. Some implementations of a JD rely on breaking the inversion symmetry in the material used to realize Josephson junctions (JJs), but a recent theoretical proposal has suggested that the effect can also be engineered by combining two JJs hosting highly transmitting Andreev bound states in a Superconducting Quantum Interference Device (SQUID) at a small, but finite flux bias [1]. We realized a SQUID with two JJs fabricated in a proximitized InAs two-dimensional electron gas (2DEG). We demonstrate gate control of the diode efficiency from zero up to around 3030\% for different flux biases which comes close to the maximum of 40\sim 40\% predicated in Ref. [1]. The key ingredient to the JD effect in the SQUID arrangement is the presence of an asymmetry between the two SQUID arms.Comment: 9+8 pages, 3+6 figures (main text + supplementary

    Evidence of topological superconductivity in planar Josephson junctions

    Full text link
    Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured in tunneling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor/semiconductor nanowires. On the other hand, two dimensional systems offer the alternative approach to confine Ma jorana channels within planar Josephson junctions, in which the phase difference {\phi} between the superconducting leads represents an additional tuning knob predicted to drive the system into the topological phase at lower magnetic fields. Here, we report the observation of phase-dependent zero-bias conductance peaks measured by tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to {\phi} ~ {\pi} significantly reduces the critical field at which the zero-bias peak appears, with respect to {\phi} = 0. The phase and magnetic field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures and scalable to complex geometries needed for topological quantum computing.Comment: main text and extended dat

    Charge-4e supercurrent in a two-dimensional InAs-Al superconductor-semiconductor heterostructure

    Full text link
    Abstract Superconducting qubits with intrinsic noise protection offer a promising approach to improve the coherence of quantum information. Crucial to such protected qubits is the encoding of the logical quantum states into wavefunctions with disjoint support. Such encoding can be achieved by a Josephson element with an unusual charge-4e supercurrent emerging from the coherent transfer of pairs of Cooper-pairs. In this work, we demonstrate the controlled conversion of a conventional charge-2e dominated to a charge-4e dominated supercurrent in a superconducting quantum interference device (SQUID) consisting of gate-tunable planar Josephson junctions. We investigate the ac Josephson effect of the SQUID and measure a dominant photon emission at twice the fundamental Josephson frequency together with a doubling of the number of Shapiro steps, both consistent with the appearance of charge-4e supercurrent. Our results present a step towards protected superconducting qubits based on superconductor-semiconductor hybrid materials

    Anodic Oxidation of Epitaxial Superconductor-Semiconductor Hybrids

    Full text link
    We demonstrate a new fabrication process for hybrid semiconductor-superconductor heterostructures based on anodic oxidation (AO), allowing controlled thinning of epitaxial Al films. Structural and transport studies of oxidized epitaxial Al films grown on insulating GaAs substrates reveal spatial non-uniformity and enhanced critical temperature and magnetic fields. Oxidation of epitaxial Al on hybrid InAs heterostructures with a conducting quantum well show similarly enhanced superconducting properties transferred to the two-dimensional electron gas (2DEG) by proximity effect, with critical perpendicular magnetic fields up to 3.5 T. An insulating AlOx film, that passivates the heterostructure from exposure to air, is obtained by complete oxidation of the Al. It simultaneously removes the need to strip Al which damages the underlying semiconductor. AO passivation yielded 2DEG mobilities two times higher than similar devices with Al removed by wet etching. An AO-passivated Hall bar showed quantum Hall features emerging at a transverse field of 2.5 T, below the critical transverse field of thinned films, eventually allowing transparent coupling of quantum Hall effect and superconductivity. AO thinning and passivation are compatible with standard lithographic techniques, giving lateral resolution below <50 nm. We demonstrate local patterning of AO by realizing a semiconductor-based Josephson junction operating up to 0.3 T perpendicular
    corecore