133 research outputs found
Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations
Control applications often feature tasks with similar, but not identical,
dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP),
a framework that parametrizes a family of related dynamical systems with a
low-dimensional set of latent factors, and introduce a semiparametric
regression approach for learning its structure from data. In the control
setting, we show that a learned HiP-MDP rapidly identifies the dynamics of a
new task instance, allowing an agent to flexibly adapt to task variations
- …