133 research outputs found

    Hidden Parameter Markov Decision Processes: A Semiparametric Regression Approach for Discovering Latent Task Parametrizations

    Full text link
    Control applications often feature tasks with similar, but not identical, dynamics. We introduce the Hidden Parameter Markov Decision Process (HiP-MDP), a framework that parametrizes a family of related dynamical systems with a low-dimensional set of latent factors, and introduce a semiparametric regression approach for learning its structure from data. In the control setting, we show that a learned HiP-MDP rapidly identifies the dynamics of a new task instance, allowing an agent to flexibly adapt to task variations
    • …
    corecore