17 research outputs found

    Development of Gelatin and Graphene-Based Nerve Regeneration Conduits Using 3D Printing Strategies for Electrical Transdifferentiation of Mesenchymal Stem Cells

    Get PDF
    In this study, gelatin and graphene-based nerve regeneration conduits/scaffolds possessing tailored 3D microstructures and mechanical properties were fabricated using 3D printing. The effect of 3D conduit microstructure and mechanical properties along with the applied electrical stimuli on mesenchymal stem cell (MSCs) behavior and transdifferentiation into Schwann cell (SC)-like phenotypes were investigated. The results indicated that the gelatin conduits/scaffolds had favorable 3D microstructural and mechanical properties for MSC attachment and growth. Immunocytochemistry results demonstrated that the application of electrical stimuli through the conductive graphene within the gelatin-based 3D microstructure had a profound effect on the differentiation of MSCs to SC-like phenotypes and their paracrine activity. 80% of the cells exhibited SC marker staining, and the cells showed significantly enhanced nerve growth factor (NGF) secretion. These results suggest that the electrical stimuli applied within the 3D gelatin matrix enables enhanced differentiation and paracrine activity compared to transdifferentiation procedures involving electrical stimuli applied on 2D substrates and chemical stimuli applied in 3D gelatin scaffolds, leading to promising nerve regeneration strategies

    Role of a PDLIM5:Palmd Complex in Directing Dendrite Morphology

    Get PDF
    Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching. We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g.

    Role of a Pdlim5:PalmD complex in directing dendrite morphology

    Get PDF
    Neuronal connectivity is regulated during normal brain development with the arrangement of spines and synapses being dependent on the morphology of dendrites. Further, in multiple neurodevelopmental and aging disorders, disruptions of dendrite formation or shaping is associated with atypical neuronal connectivity. We showed previously that Pdlim5 binds delta-catenin and promotes dendrite branching. We report here that Pdlim5 interacts with PalmD, a protein previously suggested by others to interact with the cytoskeleton (e.g., via adducin/spectrin) and to regulate membrane shaping. Functionally, the knockdown of PalmD or Pdlim5 in rat primary hippocampal neurons dramatically reduces branching and conversely, PalmD exogenous expression promotes dendrite branching as does Pdlim5. Further, we show that each proteins’ effects are dependent on the presence of the other. In summary, using primary rat hippocampal neurons we reveal the contributions of a novel Pdlim5:PalmD protein complex, composed of functionally inter-dependent components responsible for shaping neuronal dendrites

    p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro

    Get PDF
    Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer’s disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling–vertebrate members of the p120-catenin subfamily–on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis

    P120-Catenin Subfamily Members Have Distinct as Well as Shared Effects on Dendrite Morphology During Neuron Development in Vitro

    Get PDF
    Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer\u27s disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis

    Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting

    Get PDF
    In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance: ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits

    Exploring the PDZ, DUF, and LIM Domains of Pdlim5 in Dendrite Branching

    Get PDF
    The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5\u27s multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5\u27s structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5\u27s function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects

    Fabrication of Two-Dimensional and Three-Dimensional High-Resolution Binder-Free Graphene Circuits Using a Microfluidic Approach for Sensor Applications

    Get PDF
    In this study, a simple microfluidic method, which can be universally applied to different rigid or flexible substrates, was developed to fabricate high-resolution, conductive, 2D and 3D microstructured graphene-based electronic circuits. The method involves controlled and selective filling of microchannels on substrate surfaces with a conductive binder-free graphene nanoplatelets (GNP) solution. The ethanol-thermal reaction of GNP solution at low temperatures (~75 °C) prior to microchannel filling (pre-heating) further reduces GNP, enhances conductivity, reduces sheet resistance (~0.05 kΩ sq-1), enables room temperature fabrication and eliminates harsh post-processing, which makes this fabrication technique compatible with degradable substrates. This method can also be used in combination with 3D printing to fabricate 3D circuits. The feature sizes of the graphene patterns can range from a few micrometers (down to ~15 µm in width and ~5 µm in depth) to a few millimeters and use very small amounts of GNP solution (~2.5 mg of graphene to obtain ~0.1 kΩ sq-1 of sheet resistance for 1 cm2). This microfluidic approach can also be implemented using other conductive liquids, such as conductive graphene-silver solutions. This technology has the potential to pave the way for low-cost, disposable and biodegradable circuits for a range of electronic applications including near field communication antennas, pressure or strain sensors

    p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro

    No full text
    Proper dendrite morphology is essential for neuronal connectivity and function, and abnormal dendrite morphology is seen in many neurological pathologies. This study characterizes and compares the effects of a group of four proteins – the p120-catenin subfamily – that regulate cytoskeletal remodeling and dendrite morphology. To do this, I tracked the endogenous localization of each p120-subfamily catenin during neuron development, and I determined how altering the expression of each p120-subfamily catenin affects dendrite morphology. I find that all catenins are expressed in dendritic processes and the soma, ARVCF-catenin is expressed at relatively high proportions in the nucleus, and p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin. We find that overexpressing p120-catenin and delta-catenin causes increased dendritic length and branching, and their depletion decreases dendritic length and branching. Furthermore, while increasing ARVCF-catenin expression increases dendritic length and branching, decreasing expression does not result in observable morphological changes. Lastly, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing p0071-catenin expression decreases dendritic length and branching. The distinct localization patterns and morphological effects of the p120-subfamily catenins during neuron development suggest that they have some shared and some distinct roles during dendrite development

    Development of Gelatin and Graphene-Based Nerve Regeneration Conduits Using 3D Printing Strategies for Electrical Transdifferentiation of Mesenchymal Stem Cells

    Get PDF
    In this study, gelatin and graphene-based nerve regeneration conduits/scaffolds possessing tailored 3D microstructures and mechanical properties were fabricated using 3D printing. The effect of 3D conduit microstructure and mechanical properties along with the applied electrical stimuli on mesenchymal stem cell (MSCs) behavior and transdifferentiation into Schwann cell (SC)-like phenotypes were investigated. The results indicated that the gelatin conduits/scaffolds had favorable 3D microstructural and mechanical properties for MSC attachment and growth. Immunocytochemistry results demonstrated that the application of electrical stimuli through the conductive graphene within the gelatin-based 3D microstructure had a profound effect on the differentiation of MSCs to SC-like phenotypes and their paracrine activity. 80% of the cells exhibited SC marker staining, and the cells showed significantly enhanced nerve growth factor (NGF) secretion. These results suggest that the electrical stimuli applied within the 3D gelatin matrix enables enhanced differentiation and paracrine activity compared to transdifferentiation procedures involving electrical stimuli applied on 2D substrates and chemical stimuli applied in 3D gelatin scaffolds, leading to promising nerve regeneration strategies.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.iecr.8b05537.</p
    corecore