12 research outputs found
Concert a benefici dels damnificats de Colòmbia
Programa del concert a benefici dels damnificats de Colòmbia que va tenir lloc el 27 de desembre de 1985 al Gran Teatre del Liceu. S'hi van interpretar fragments de "La forza del destino", "La traviata", "Un ballo in maschera", "Rigoletto" i "Don Carlo" de G. Verdi, "I Pagliacci" de R. Leoncavallo, "L'Elisir d'amore" i "Adelia" de G. Donizetti, "L'italiana in Algeri" i "Semiramide" de G. Rossini, "Don Giovanni" de W. A. Mozart, "Faust" de C. Gounod, "Andrea Chenier" d'U. Giordano, i à ries de S. Cardillo. Hi van participar L. Nucci, E. Tarrés, E. Giménez, L. Valentini-Terrani, A. .Anelli, J. Pons, M. Caballé, J. Carreras i R. Bruson, i el Cor i l'Orquestra del Gran Teatre del Liceu dirigits per R. Paternostro i A. SicilianiOrquestra Simfònica i Cor del Gran Teatre del Liceu dirigits per Robert Paternostro i Alessandro Sicilian
Recommended from our members
Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia.
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex
Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex
Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex
A level-set based mesh adaptation technique for mass conservative ice accretion in unsteady simulations
This paper presents an innovative approach to model evolving boundaries problems due to the accumulation or erosion of material over a surface, offering a robust alternative to standard algebraic methods. The strategy is based on the level-set method and it allows the local conservation of the prescribed mass material accounting for the curvature of the body. No partial differential equations are solved for the level-set function, but simple geometric quantities are used to provide an implicit discretization of the new updated boundary. The method is applied to body-fitted unstructured grids, that allow a good representation of arbitrarily complex geometries. Two multi-step in-flight ice accretion simulations over a NACA0012 are presented to show the feasibility and adaptability of the method, that can be also extended to three-dimensional applications
Epigenetics and cortical spreading depression: changes of DNA methylation level at retrotransposon sequences
Cortical spreading depression (CSD) is an evolutionarily conserved phenomenon that involves a slow and self-propagating depolarization wave associated with spontaneous depression of electrical neuronal activity. CSD plays a central role in the pathophysiology of several brain diseases and is considered to be able to promote "Preconditioning". This phenomenon consists of the brain protecting itself against future injury by adaptation. Understanding of the molecular mechanisms underlying Preconditioning has significant clinical implications. We have already proposed that the long-lasting effects of CSD could be related to silencing of retrotransposon sequences by histone methylation. We analyzed DNA methylation of two retrotransposon sequences, LINE1 and L1, and their corresponding expression pattern after CSD induction. Based on immunoprecipitation assay of the methylated DNA (meDIP), we demonstrated hypermethylation of both sequences in preconditioned rat brain cortex compared with a control 24 h after CSD induction. Using quantitative PCR, we also showed that CSD induction caused a decrease of the transcript level of both retrotransposon sequences. Our data are consistent with the hypothesis of epigenetic modifications in Preconditioning-dependent neuroprotection by increasing genome stability via the silencing of retrotransposon sequences
La favorita. Spirto gentil : romanza di Fernando / Donizetti, comp. L'africana. Oh paradiso ! : aria di Vasco / Meyerbeer, comp ; Alessandro Bonci, T [acc p]
Titre uniforme : Donizetti, Gaetano (1797-1848). Compositeur. [La favorite]. Extrait ; arr. (italien)Titre uniforme : Meyerbeer, Giacomo (1791-1864). Compositeur. [L'Africaine]. Extrait ; arr. (italien)Comprend : La favorita / Donizetti, comp ; Alessandro Bonci, T [acc p] ; L'africana / Meyerbeer, comp ; Alessandro Bonci, T [acc p]Contient une table des matière
La favorita. Bell'alba foriera : coro d'introduzione / Donizetti, comp ; Coristi del teatro alla Scala [acc org]. La favorita. E fia vero ? : duetto / [Donizetti], comp ; A[lessandro] Bonci, T ; O[reste] Luppi, B [acc p]
Titre uniforme : Donizetti, Gaetano (1797-1848). Compositeur. [La favorite]. Choix ; arr. (italien)Enregistrement : (Italie) Milan, 03-10-1905Contient une table des matière