620 research outputs found

    WHO should accelerate, not stall, rectal artesunate deployment for pre-referral treatment of severe malaria

    Get PDF
    The recent World Health Organization moratorium on rectal artesunate (RAS) for pre-referral treatment of severe childhood malaria is costing young lives. The decision was based on disappointing findings from a large observational study that provided RAS to community health workers with little training and supervision. This non-randomized, operational research has provided useful information to guide the implementation of RAS but is subject to bias and confounding and cannot be used to assess treatment effects. Parenteral artesunate reduces severe malaria mortality and a large body of evidence also shows RAS has lifesaving efficacy. There is now more than a decade of delay in conducting the necessary engagement and training required for successful deployment of RAS. Further delays will result in more preventable deaths

    A Competing-Risk Approach for Modeling Length of Stay in Severe Malaria Patients in South-East Asia and the Implications for Planning of Hospital Services.

    Get PDF
    Background: Management of severe malaria with limited resources requires comprehensive planning. Expected length of stay (LOS) and the factors influencing it are useful in the planning and optimisation of service delivery. Methods: A secondary, competing-risk approach to survival analysis was performed for 1217 adult severe malaria patients from the South-East Asia Quinine Artesunate Malaria Trial. Results: Twenty percent of patients died; 95.4% within 7 days compared to 70.3% of those who were discharged. Median time to discharge was 6 days. Compared to quinine, artesunate increased discharge incidence (subdistribution-Hazard ratio, 1.24; [95% confidence interval 1.09-1.40]; P = .001) and decreased incidence of death (0.60; [0.46-0.80]; P < .001). Low Glasgow coma scale (discharge, 1.08 [1.06-1.11], P < .001; death, 0.85 [0.82-0.89], P < .001), high blood urea-nitrogen (discharge, 0.99 [0.99-0.995], P < .001; death, 1.00 [1.00-1.01], P = .012), acidotic base-excess (discharge, 1.05 [1.03-1.06], P < .001; death, 0.90 [0.88-0.93], P < .001), and development of shock (discharge, 0.25 [0.13-0.47], P < .001; death, 2.14 [1.46-3.12], P < .001), or coma (discharge, 0.46 [0.32-0.65], P < .001; death, 2.30 [1.58-3.36], P < .001) decreased cumulative incidence of discharge and increased incidence of death. Conventional Kaplan-Meier survival analysis overestimated cumulative incidence compared to competing-risk model. Conclusions: Clinical factors on admission and during hospitalisation influence LOS in severe malaria, presenting targets to improve health and service efficiency. Artesunate has the potential to increase LOS, which should be accounted for when planning services. In-hospital death is a competing risk for discharge; an important consideration in LOS models to reduce overestimation of risk and misrepresentation of associations

    Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Get PDF
    BACKGROUND: Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT). The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. METHODS: A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. RESULTS: The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with mismatched half-lives, together with reducing malaria transmission through vector control measures. CONCLUSION: This paper has demonstrated the use of a comprehensive mathematical model to describe malaria transmission and the spread of drug resistance. The model is strongly linked to the empirical evidence obtained from extensive data available from various sources. This model can be a useful tool to inform the design of treatment policies, particularly at a time when ACT has been endorsed by WHO as first-line treatment for falciparum malaria worldwide

    Infectivity of Chronic Malaria Infections and Its Consequences for Control and Elimination

    Get PDF
    Assessing the importance of targeting the chronic Plasmodium falciparum malaria reservoir is pivotal as the world moves toward malaria eradication. Through the lens of a mathematical model, we show how, for a given malaria prevalence, the relative infectivity of chronic individuals determines what intervention tools are predicted be the most effective. Crucially, in a large part of the parameter space where elimination is theoretically possible, it can be achieved solely through improved case management. However, there are a significant number of settings where malaria elimination requires not only good vector control but also a mass drug administration campaign. Quantifying the relative infectiousness of chronic malaria across a range of epidemiological settings would provide essential information for the design of effective malaria elimination strategies. Given the difficulties obtaining this information, we also provide a set of epidemiological metrics that can be used to guide policy in the absence of such data

    A novel sensitive hexaplex high-resolution melt assay for identification of five human Plasmodium species plus internal control

    Get PDF
    Background: The diagnosis of malaria infection in humans remains challenging, further complicated by mixed Plasmodium species infections, potentially altering disease severity and morbidity. To facilitate appropriate control measures and treatment, rapid, sensitive, and specific detection assays, including those for the second minor species, would be required. This study aimed to develop a multiplex high-resolution melting (hexaplex PCR-HRM) assay with seven distinct peaks corresponding to five Plasmodium species of the Plasmodium genus, and an internal control to limit false negatives providing quality assurance testing results. Methods: Five species-specific primers for human malaria species were designed targeting on the Plasmodium 18 small subunit ribosomal RNA (18S rRNA) and mitochondrial genes. The hexaplex PCR-HRM was developed for the simultaneous and rapid detection and differentiation of five human Plasmodium spp. The limit of detection (LoD), sensitivity, and specificity of the assay were evaluated. Artificial mixing was used to assess the ability to determine the second minor species. Furthermore, a hexaplex PCR-HRM assay was used to identify 120 Plasmodium-infected clinical isolates from Kanchanaburi, Western Thailand, where malaria is endemic. Results: The hexaplex PCR-HRM assay detected the targeted genome of five Plasmodium species at levels as low as 2.354–3.316 copies/uL with 91.76 % sensitivity and 98.04 % specificity. In artificial mixing, the assay could detect minority parasite species at 0.001 % of the predominant parasite population. Plasmodium vivax infections (99 %) accounted for the majority of malaria cases in Kanchanaburi, Thailand. Conclusions: The developed hexaplex PCR-HRM assay we present in this study is a novel approach for multiplexing the Plasmodium genus and detecting five Plasmodium species with the advantage of detecting second minority parasite species. The developed one-step assay without any nesting protocols would reduce the risks of cross-contamination. Moreover, it also provides a simple, sensitive, specific, and low-cost approach for optional molecular detection of malaria

    Intestinal injury and the gut microbiota in patients with Plasmodium falciparum malaria

    Get PDF
    The pathophysiology of severe falciparum malaria involves a complex interaction between the host, parasite, and gut microbes. In this review, we focus on understanding parasite-induced intestinal injury and changes in the human intestinal microbiota composition in patients with Plasmodium falciparum malaria. During the blood stage of P. falciparum infection, infected red blood cells adhere to the vascular endothelium, leading to widespread microcirculatory obstruction in critical tissues, including the splanchnic vasculature. This process may cause intestinal injury and gut leakage. Epidemiological studies indicate higher rates of concurrent bacteraemia in severe malaria cases. Furthermore, severe malaria patients exhibit alterations in the composition and diversity of the intestinal microbiota, although the exact contribution to pathophysiology remains unclear. Mouse studies have demonstrated that the gut microbiota composition can impact susceptibility to Plasmodium infections. In patients with severe malaria, the microbiota shows an enrichment of pathobionts, including pathogens that are known to cause concomitant bloodstream infections. Microbial metabolites have also been detected in the plasma of severe malaria patients, potentially contributing to metabolic acidosis and other clinical complications. However, establishing causal relationships requires intervention studies targeting the gut microbiota

    Limited polymorphism in the dihydrofolate reductase (dhfr) and dihydropteroate synthase genes (dhps) of Plasmodium knowlesi isolate from Thailand

    Get PDF
    Background: The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr–pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. Methods: Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein–ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. Results: Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein–ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr–pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. Conclusions: A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins

    An artesunate pharmacometric model to explain therapeutic responses in falciparum malaria.

    Get PDF
    Background: The artemisinins are potent and widely used antimalarial drugs that are eliminated rapidly. A simple concentration–effect pharmacometric model does not explain why dosing more frequently than once daily fails to augment parasite clearance and improve therapeutic responses in vivo. Artemisinins can induce a temporary non-replicative or ‘dormant’ drug refractory state in Plasmodium falciparum malaria parasites which may explain recrudescences observed in clinical trials despite full drug susceptibility, but whether it explains the dosing–response relationship is uncertain. Objectives: To propose a revised model of antimalarial pharmacodynamics that incorporates reversible asexual parasite injury and temporary drug refractoriness in order to explain the failure of frequent dosing to augment therapeutic efficacy in falciparum malaria. Methods: The model was fitted using a Bayesian Markov Chain Monte Carlo approach with the parasite clearance data from 39 patients with uncomplicated falciparum malaria treated with artesunate from western Cambodia and 40 patients from northwestern Thailand reported previously. Results: The revised model captured the dynamics of parasite clearance data. Its predictions are consistent with observed therapeutic responses. Conclusions: A within-host pharmacometric model is proposed in which it is hypothesized that some malaria parasites enter a temporary drug refractory state after exposure to artemisinin antimalarials, which is followed by delayed parasite death or reactivation. The model fitted the observed sequential parasite density data from patients with acute P. falciparum malaria, and it supported reduced ring stage activity in artemisinin-resistant infections
    corecore