9,331 research outputs found
Magnetic topology and surface differential rotation on the K1 subgiant of the RS CVn system HR 1099
We present here spectropolarimetric observations of the RS CVn system HR 1099
(V711 Tau) secured from 1998 February to 2002 January with the
spectropolarimeter MuSiCoS at the Telescope Bernard Lyot (Observatoire du Pic
du Midi, France). We apply Zeeman-Doppler Imaging and reconstruct brightness
and magnetic surface topologies of the K1 primary subgiant of the system, at
five different epochs. We confirm the presence of large, axisymmetric regions
where the magnetic field is mainly azimuthal, providing further support to the
hypothesis that dynamo processes may be distributed throughout the whole
convective zone in this star. We study the short-term evolution of surface
structures from a comparison of our images with observations secured at
close-by epochs by Donati et al. (2003) at the Anglo-Australian Telescope. We
conclude that the small-scale brightness and magnetic patterns undergo major
changes within a timescale of 4 to 6 weeks, while the largest structures remain
stable over several years. We report the detection of a weak surface
differential rotation (both from brightness and magnetic tracers) indicating
that the equator rotates faster than the pole with a difference in rotation
rate between the pole and the equator about 4 times smaller than that of the
Sun. This result suggests that tidal forces also impact the global dynamic
equilibrium of convective zones in cool active stars.Comment: accepted by MNRA
Predicting radio emission from the newborn hot Jupiter V830 Tau and its host star
Magnetised exoplanets are expected to emit at radio frequencies analogously
to the radio auroral emission of Earth and Jupiter. We predict the radio
emission from V830 Tau b, the youngest (2 Myr) detected exoplanet to date. We
model the host star wind using 3DMHD simulations that take into account its
surface magnetism. With this, we constrain the local conditions around V830 Tau
b that we use to then compute its radio emission. We estimate average radio
flux densities of 6 to 24mJy, depending on the assumed radius of the planet
(one or two Rjupiter). These radio fluxes are present peaks that are up to
twice the average values. We show here that these fluxes are weakly dependent
(a factor of 1.8) on the assumed polar planetary magnetic field (10 to 100G),
opposed to the maximum frequency of the emission, which ranges from 18 to
240MHz. We also estimate the thermal radio emission from the stellar wind. By
comparing our results with VLA and VLBA observations of the system, we
constrain the stellar mass-loss rate to be <3e-9 Msun/yr, with likely values
between ~1e-12 and 1e-10 Msun/yr. The frequency-dependent extension of the
radio-emitting wind is around ~ 3 to 30 Rstar for frequencies in the range of
275 to 50MHz, implying that V830 Tau b, at an orbital distance of 6.1 Rstar,
could be embedded in the regions of the host star's wind that are optically
thick to radio wavelengths, but not deeply so. Planetary emission can only
propagate in the stellar wind plasma if the frequency of the cyclotron emission
exceeds the stellar wind plasma frequency. For that, we find that for planetary
radio emission to propagate through the host star wind, planetary magnetic
field strengths larger than ~1.3 to 13 G are required. The V830 Tau system is a
very interesting system for conducting radio observations from both the
perspective of radio emission from the planet as well as from the host star's
wind.Comment: A&A, in pres
Magnetic field, differential rotation and activity of the hot-Jupiter hosting star HD 179949
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514
days. The system was reported to undergo episodes of stellar activity
enhancement modulated by the orbital period, interpreted as caused by
Star-Planet Interactions (SPIs). One possible cause of SPIs is the large-scale
magnetic field of the host star in which the close-in giant planet orbits.
In this paper we present spectropolarimetric observations of HD 179949 during
two observing campaigns (2009 September and 2007 June). We detect a weak
large-scale magnetic field of a few Gauss at the surface of the star. The field
configuration is mainly poloidal at both observing epochs. The star is found to
rotate differentially, with a surface rotation shear of dOmega=0.216\pm0.061
rad/d, corresponding to equatorial and polar rotation periods of 7.62\pm0.07
and 10.3\pm0.8 d respectively. The coronal field estimated by extrapolating the
surface maps resembles a dipole tilted at ~70 degrees. We also find that the
chromospheric activity of HD 179949 is mainly modulated by the rotation of the
star, with two clear maxima per rotation period as expected from a highly
tilted magnetosphere. In September 2009, we find that the activity of HD 179949
shows hints of low amplitude fluctuations with a period close to the beat
period of the system.Comment: Accepted for publication in Monthly Notices of The Royal Astronomical
Societ
Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies
Spectroscopic and spectropolarimetric observations of the pre-main sequence
early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007,
2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian
Telescope using the UCLES echelle spectrograph and the SEMPOL
spectropolarimeter visitor instrument. Brightness and surface magnetic field
topologies were reconstructed for the star using the technique of least-squares
deconvolution to increase the signal-to-noise of the data.
The reconstructed brightness maps show that HD 141943 had a weak polar spot
and a significant amount of low latitude features, with little change in the
latitude distribution of the spots over the 4 years of observations. The
surface magnetic field was reconstructed at three of the epochs from a high
order (l <= 30) spherical harmonic expansion of the spectropolarimetric
observations. The reconstructed magnetic topologies show that in 2007 and 2010
the surface magnetic field was reasonably balanced between poloidal and
toroidal components. However we find tentative evidence of a change in the
poloidal/toroidal ratio in 2009 with the poloidal component becoming more
dominant. At all epochs the radial magnetic field is predominantly
non-axisymmetric while the azimuthal field is predominantly axisymmetric with a
ring of positive azimuthal field around the pole similar to that seen on other
active stars.Comment: 18 pages, 17 figures, accepted by MNRA
Dynamo Processes in the T Tauri star V410 Tau
We present new brightness and magnetic images of the weak-line T Tauri star
V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope
Bernard Lyot (TBL). The brightness image shows a large polar spot and
significant spot coverage at lower latitudes. The magnetic maps show a field
that is predominantly dipolar and non-axisymmetric with a strong azimuthal
component. The field is 50% poloidal and 50% toroidal, and there is very little
differential rotation apparent from the magnetic images.
A photometric monitoring campaign on this star has previously revealed V-band
variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter.
The Doppler image presented here is consistent with this low variability.
Calculating the flux predicted by the mapped spot distribution gives an
peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of
the lightcurve, compared with previous observations, appears to be related to a
change in the distribution of the spots, rather than the number or area.
This paper is the first from a Zeeman-Doppler imaging campaign being carried
out on V410 Tau between 2009-2012 at TBL. During this time it is expected that
the lightcurve will return to a high amplitude state, allowing us to ascertain
whether the photometric changes are accompanied by a change in the magnetic
field topology.Comment: 12 pages, 11 figures, accepted by MNRA
A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771
Aims. We investigate the long-term evolution of the large-scale photospheric
magnetic field geometry of the solar-type star HD 190771. With fundamental
parameters very close to those of the Sun except for a shorter rotation period
of 8.8 d, HD 190771 provides us with a first insight into the specific impact
of the rotation rate in the dynamo generation of magnetic fields in 1
stars.
Methods. We use circularly polarized, high-resolution spectra obtained with
the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute
cross-correlation line profiles with high signal-to-noise ratio to detect
polarized Zeeman signatures. From three phase-resolved data sets collected
during the summers of 2007, 2008, and 2009, we model the large-scale
photospheric magnetic field of the star by means of Zeeman-Doppler imaging and
follow its temporal evolution.
Results. The comparison of the magnetic maps shows that a polarity reversal
of the axisymmetric component of the large-scale magnetic field occurred
between 2007 and 2008, this evolution being observed in both the poloidal and
toroidal magnetic components. Between 2008 and 2009, another type of global
evolution occured, characterized by a sharp decrease of the fraction of
magnetic energy stored in the toroidal component. These changes were not
accompanied by significant evolution in the total photospheric magnetic energy.
Using our spectra to perform radial velocity measurements, we also detect a
very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor
Temporal fluctuations in the differential rotation of cool active stars
This paper reports positive detections of surface differential rotation on
two rapidly rotating cool stars at several epochs, by using stellar surface
features (both cool spots and magnetic regions) as tracers of the large scale
latitudinal shear that distorts the convective envelope in this type of stars.
We also report definite evidence that this differential rotation is different
when estimated from cool spots or magnetic regions, and that it undergoes
temporal fluctuations of potentially large amplitude on a time scale of a few
years. We consider these results as further evidence that the dynamo processes
operating in these stars are distributed throughout the convective zone rather
than being confined at its base as in the Sun. By comparing our observations
with two very simple models of the differential rotation within the convective
zone, we obtain evidence that the internal rotation velocity field of the stars
we investigated is not like that of the Sun, and may resemble that we expect
for rapid rotators. We speculate that the changes in differential rotation
result from the dynamo processes (and from the underlying magnetic cycle) that
periodically converts magnetic energy into kinetic energy and vice versa. We
emphasise that the technique outlined in this paper corresponds to the first
practical method for investigating the large scale rotation velocity field
within convective zones of cool active stars, and offers several advantages
over asteroseismology for this particular purpose and this specific stellar
class.Comment: 14 pages, 4 figure
Magnetic activity on AB Doradus: Temporal evolution of starspots and differential rotation from 1988 to 1994
Surface brightness maps for the young K0 dwarf AB Doradus are reconstructed
from archival data sets for epochs spanning 1988 to 1994. By using the
signal-to-noise enhancement technique of Least-Squares Deconvolution, our
results show a greatly increased resolution of spot features than obtained in
previously published surface brightness reconstructions. These images show that
for the exception of epoch 1988.96, the starspot distributions are dominated by
a long-lived polar cap, and short-lived low to high latitude features. The
fragmented polar cap at epoch 1988.96 could indicate a change in the nature of
the dynamo in the star. For the first time we measure differential rotation for
epochs with sufficient phase coverage (1992.05, 1993.89, 1994.87). These
measurements show variations on a timescale of at least one year, with the
strongest surface differential rotation ever measured for AB Dor occurring in
1994.86. In conjunction with previous investigations, our results represent the
first long-term analysis of the temporal evolution of differential rotation on
active stars.Comment: accepted by MNRAS 18 pages 18 figure
- âŠ