19 research outputs found

    FGF2 Affects Parkinson's Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31

    Get PDF
    Ras-associated binding (Rab) proteins are small GTPases that regulate the trafficking of membrane components during endocytosis and exocytosis including the release of extracellular vesicles (EVs). Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorder in the elderly population, where pathological proteins such as alpha-synuclein (alpha-Syn) are transmitted in EVs from one neuron to another neuron and ultimately across brain regions, thereby facilitating the spreading of pathology. We recently demonstrated fibroblast growth factor-2 (FGF2) to enhance the release of EVs and delineated the proteomic signature of FGF2-triggered EVs in cultured primary hippocampal neurons. Out of 235 significantly upregulated proteins, we found that FGF2 specifically enriched EVs for the two Rab family membersRab8bandRab31. Consequently, we investigated the interactions ofRab8bandRab31using a network analysis approach in order to estimate the global influence of their enrichment in EVs. To achieve this, we have demarcated a protein-protein interaction network (PPiN) for these Rabs and identified the proteins associated with PD in various cellular components of the central nervous system (CNS), in different brain regions, and in the enteric nervous system (ENS). A total of 126 direct or indirect interactions were reported for two Rab candidates, out of which 114 areRab8binteractions and 54 areRab31interactions, ultimately resulting in an individual interaction score (IS) of 90.48 and 42.86%, respectively. Conclusively, these results for the first time demonstrate the relevance of FGF2-induced Rab-enrichment in EVs and its potential to regulate PD pathophysiology

    A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection

    Get PDF
    Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3–7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12–22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP–PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase–cAMP–PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase–cAMP–PKA axis in an immune rheostat-like fashion.</p

    Network Analysis Identifies Drug Targets and Small Molecules to Modulate Apoptosis Resistant Cancers

    No full text
    Programed cell death or apoptosis fails to induce cell death in many recalcitrant cancers. Thus, there is an emerging need to activate the alternate cell death pathways in such cancers. In this study, we analyzed the apoptosis-resistant colon adenocarcinoma, glioblastoma multiforme, and small cell lung cancers transcriptome profiles. We extracted clusters of non-apoptotic cell death genes from each cancer to understand functional networks affected by these genes and their role in the induction of cell death when apoptosis fails. We identified transcription factors regulating cell death genes and protein–protein interaction networks to understand their role in regulating cell death mechanisms. Topological analysis of networks yielded FANCD2 (ferroptosis, negative regulator, down), NCOA4 (ferroptosis, up), IKBKB (alkaliptosis, down), and RHOA (entotic cell death, down) as potential drug targets in colon adenocarcinoma, glioblastoma multiforme, small cell lung cancer phenotypes respectively. We also assessed the miRNA association with the drug targets. We identified tumor growth-related interacting partners based on the pathway information of drug-target interaction networks. The protein–protein interaction binding site between the drug targets and their interacting proteins provided an opportunity to identify small molecules that can modulate the activity of functional cell death interactions in each cancer. Overall, our systematic screening of non-apoptotic cell death-related genes uncovered targets helpful for cancer therapy

    Comprehensive <i>In silico</i> analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein–protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.</p

    Corrigendum to “Comprehensive in-silico analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small molecular inhibitors for the treatment of Cholangiocarcinoma” [Comput. Biol. Med. 166 (2023) 107572]

    No full text
    The authors regret that in the initial publication of this study, typographical errors were identified in Figs. 1 and 2. In Fig. 1D, pie chart the number of non-upregulated genes has to be corrected to 202, and the corresponding percentage has to be adjusted to “91.82 %". Similarly, in Result Section 3.3, the total count of chaperones was mistyped as 200, it should be corrected to 220, in lines 4 and 8. The Venn diagram's Fig. 2B had 144 incorrectly labelled; it must be corrected to 114. The authors would like to apologise for any inconvenience caused.[Formula</p

    Comprehensive <i>In silico</i> analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein–protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.</p

    System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer

    No full text
    ASCL1 is a basic Helix–Loop–Helix transcription factor (TF), which is involved in various cellular processes like neuronal development and signaling pathways. Transcriptome profiling has shown that ASCL1 overexpression plays an important role in the development of glioma and Small Cell Lung Carcinoma (SCLC), but distinct and common molecular mechanisms regulated by ASCL1 in these cancers are unknown. In order to understand how it drives the cellular functional network in these two tumors, we generated a gene expression profile in a glioma cell line (U87MG) to identify ASCL1 gene targets by an si RNA silencing approach and then compared this with a publicly available dataset of similarly silenced SCLC (NCI-H1618 cells). We constructed TF–TF and gene–gene interactions, as well as protein interaction networks of ASCL1 regulated genes in glioma and SCLC cells. Detailed network analysis uncovered various biological processes governed by ASCL1 target genes in these two tumor cell lines. We find that novel ASCL1 functions related to mitosis and signaling pathways influencing development and tumor growth are affected in both glioma and SCLC cells. In addition, we also observed ASCL1 governed functional networks that are distinct to glioma and SCLC

    Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies

    No full text
    Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336–355), P2C (367–384), and P2D (390–400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection

    A Comprehensive SARS-CoV-2 Genomic Analysis Identifies Potential Targets for Drug Repurposing

    No full text
    Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a novel human coronavirus strain (HCoV) initially reported in December 2019 in Wuhan City, China causing pneumonia-like symptoms and other respiratory tract illness. It’s higher transmission and infection rate has successfully enabled it to have a global spread over a matter of small time. With 6,529,240 cases and about 385,264 deaths, this pandemic has become a global concern with certain drugs and vaccines failing at later clinical trials. Materials and Methods: Phylogenetic Analysis, Haplotype Network, Analysis of conserved genes and population-level variants, Using conserved genes as targets for drug designing, Docking studies and Molecular Dynamics (MD) simulations to predict the stability of Drug-Ligand Complex. Results: We identified the most common haplotypes from the haplotype network and at least seven different clusters were found signifying seven different viral lineages across the globe. We studied the mutation frequency across the SARS-CoV-2 viral genome. The conserved genes and population level variants were analyzed and NSP10, Nucleoprotein, Plpro and 3CLpro which were conserved at the highest threshold were used as drug targets for molecular dynamics simulations. Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan are among the potential drugs which are suggested for further pre-clinical and clinical trials. Significance: This particular study provides a comprehensive targeting of the conserved genes as a novel approach for drug targeting. The conserved gene approach could also be of a big use while designing vaccines and cure. Mutations in the viral genome make the designing of the drugs a challenging task which has a higher risk of failure at later clinical trials. This approach of targeting the stable genes for drug discovery would provide a better therapeutic approach and confidence in the successive clinical trials. We also identified the global level spread of SARS-CoV-2 and mutation frequencies across the viral genome. Our study gives insights of the origin and global spread of the SARS-CoV-2. The data provided in this study can further be used by other groups to understand and combat Covid 19.</p
    corecore