26 research outputs found

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Myths and Legends in High-Performance Computing

    Full text link
    In this thought-provoking article, we discuss certain myths and legends that are folklore among members of the high-performance computing community. We gathered these myths from conversations at conferences and meetings, product advertisements, papers, and other communications such as tweets, blogs, and news articles within and beyond our community. We believe they represent the zeitgeist of the current era of massive change, driven by the end of many scaling laws such as Dennard scaling and Moore's law. While some laws end, new directions are emerging, such as algorithmic scaling or novel architecture research. Nevertheless, these myths are rarely based on scientific facts, but rather on some evidence or argumentation. In fact, we believe that this is the very reason for the existence of many myths and why they cannot be answered clearly. While it feels like there should be clear answers for each, some may remain endless philosophical debates, such as whether Beethoven was better than Mozart. We would like to see our collection of myths as a discussion of possible new directions for research and industry investment

    Fail-in-Place Network Design: Interaction Between Topology, Routing Algorithm and Failures

    Full text link
    Abstract—The growing system size of high performance com-puters results in a steady decrease of the mean time between failures. Exchanging network components often requires whole system downtime which increases the cost of failures. In this work, we study a fail-in-place strategy where broken network elements remain untouched. We show, that a fail-in-place strategy is feasible for todays networks and the degradation is manageable, and provide guidelines for the design. Our network failure simulation toolchain allows system designers to extrapolate the performance degradation based on expected failure rates, and it can be used to evaluate the current state of a system. In a case study of real-world HPC systems, we will analyze the performance degradation throughout the systems lifetime under the assumption that faulty network components are not repaired, which results in a recommendation to change the used routing algorithm to improve the network performance as well as the fail-in-place characteristic. Keywords—Network design, network simulations, network man-agement, fail-in-place, routing protocols, fault tolerance, availability I

    At the Locus of Performance: A Case Study in Enhancing CPUs with Copious 3D-Stacked Cache

    Full text link
    Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of LARC, a processor fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a board set of proxy-applications and benchmarks, we aim to reveal where HPC CPU performance could be circa 2028, and conclude an average boost of 9.77x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design

    White Paper from Workshop on Large-scale Parallel Numerical Computing Technology (LSPANC 2020): HPC and Computer Arithmetic toward Minimal-Precision Computing

    Full text link
    In numerical computations, precision of floating-point computations is a key factor to determine the performance (speed and energy-efficiency) as well as the reliability (accuracy and reproducibility). However, precision generally plays a contrary role for both. Therefore, the ultimate concept for maximizing both at the same time is the minimal-precision computing through precision-tuning, which adjusts the optimal precision for each operation and data. Several studies have been already conducted for it so far (e.g. Precimoniuos and Verrou), but the scope of those studies is limited to the precision-tuning alone. Hence, we aim to propose a broader concept of the minimal-precision computing system with precision-tuning, involving both hardware and software stack. In 2019, we have started the Minimal-Precision Computing project to propose a more broad concept of the minimal-precision computing system with precision-tuning, involving both hardware and software stack. Specifically, our system combines (1) a precision-tuning method based on Discrete Stochastic Arithmetic (DSA), (2) arbitrary-precision arithmetic libraries, (3) fast and accurate numerical libraries, and (4) Field-Programmable Gate Array (FPGA) with High-Level Synthesis (HLS). In this white paper, we aim to provide an overview of various technologies related to minimal- and mixed-precision, to outline the future direction of the project, as well as to discuss current challenges together with our project members and guest speakers at the LSPANC 2020 workshop; https://www.r-ccs.riken.jp/labs/lpnctrt/lspanc2020jan/

    A High-Performance Design, Implementation, Deployment, and Evaluation of The Slim Fly Network

    Full text link
    Novel low-diameter network topologies such as Slim Fly (SF) offer significant cost and power advantages over the established Fat Tree, Clos, or Dragonfly. To spearhead the adoption of low-diameter networks, we design, implement, deploy, and evaluate the first real-world SF installation. We focus on deployment, management, and operational aspects of our test cluster with 200 servers and carefully analyze performance. We demonstrate techniques for simple cabling and cabling validation as well as a novel high-performance routing architecture for InfiniBand-based low-diameter topologies. Our real-world benchmarks show SF's strong performance for many modern workloads such as deep neural network training, graph analytics, or linear algebra kernels. SF outperforms non-blocking Fat Trees in scalability while offering comparable or better performance and lower cost for large network sizes. Our work can facilitate deploying SF while the associated (open-source) routing architecture is fully portable and applicable to accelerate any low-diameter interconnect
    corecore