81 research outputs found

    Human neuronal stargazin-like proteins, γ_2, γ_3 and γ_4; an investigation of their specific localization in human brain and their influence on Ca_V2.1 voltage-dependent calcium channels expressed in Xenopus oocytes

    Get PDF
    Background: Stargazin (γ2) and the closely related γ3, and γ4 transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins γ2, γ3, and γ4 in the human central nervous system (CNS). In addition, we investigated whether human γ2 or γ4 could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. Results: The mRNA encoding human γ2 is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ3 is abundant in cerebral cortex and amygdala and γ4 in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ2 and γ4 are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ2 is clearly detected in granule cells. The hippocampus stains for γ2 and γ4 throughout the layers of the every CA region and the dentate gyrus, whilst γ3 appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a CaV2.1/β4 VDCC complex, either in the absence or presence of an α2δ2 subunit, neither γ2 nor γ4 significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. Conclusion: The human γ2, γ3 and γ4 stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those reported by other laboratories for the rodent orthologues of each protein. Whilst the fact that neither γ2 nor γ4 modulated the properties of a VDCC complex with which they could associate in vivo in Purkinje cells adds weight to the hypothesis that the principal role of these proteins is not as auxiliary subunits of VDCCs, it does not exclude the possibility that they play another role in VDCC function

    Capsaicin-induced endocytosis of endogenous presynaptic Ca_{V}2.2 in DRG-spinal cord co-cultures inhibits presynaptic function

    Get PDF
    The N-type calcium channel, CaV2.2 is key to neurotransmission from the primary afferent terminals of dorsal root ganglion (DRG) neurons to their post-synaptic targets in the spinal cord. In this study we have utilized CaV2.2_HA knock-in mice, because the exofacial epitope tag in CaV2.2_HA enables accurate detection and localization of endogenous CaV2.2. CaV2.2_HA knock-in mice were used as a source of DRGs to exclusively study the presynaptic expression of N-type calcium channels in co-cultures between DRG neurons and wild-type spinal cord neurons. CaV2.2_HA is strongly expressed on the cell surface, particularly in TRPV1-positive small and medium DRG neurons. Super-resolution images of the presynaptic terminals revealed an increase in CaV2.2_HA expression and increased association with the post-synaptic marker Homer over time in vitro. Brief application of the TRPV1 agonist, capsaicin, resulted in a significant down-regulation of cell surface CaV2.2_HA expression in DRG neuron somata. At their presynaptic terminals, capsaicin caused a reduction in CaV2.2_HA proximity to and co-localization with the active zone marker RIM 1/2, as well as a lower contribution of N-type channels to single action potential-mediated Ca2+ influx. The mechanism of this down-regulation of CaV2.2_HA involves a Rab 11a-dependent trafficking process, since dominant-negative Rab11a(S25N) occludes the effect of capsaicin on presynaptic CaV2.2_HA expression, and also prevents the effect of capsaicin on action potential induced Ca2+ influx. Taken together, these data suggest that capsaicin causes a decrease in cell surface CaV2.2_HA expression in DRG terminals via a Rab11a-dependent endosomal trafficking pathway

    Human neuronal stargazin-like proteins, γ(2), γ(3 )and γ(4); an investigation of their specific localization in human brain and their influence on Ca(V)2.1 voltage-dependent calcium channels expressed in Xenopus oocytes.

    Get PDF
    BACKGROUND: Stargazin (γ(2)) and the closely related γ(3), and γ(4 )transmembrane proteins are part of a family of proteins that may act as both neuronal voltage-dependent calcium channel (VDCC) γ subunits and transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazoleproponinc (AMPA) receptor regulatory proteins (TARPs). In this investigation, we examined the distribution patterns of the stargazin-like proteins γ(2), γ(3), and γ(4 )in the human central nervous system (CNS). In addition, we investigated whether human γ(2 )or γ(4 )could modulate the electrophysiological properties of a neuronal VDCC complex transiently expressed in Xenopus oocytes. RESULTS: The mRNA encoding human γ(2 )is highly expressed in cerebellum, cerebral cortex, hippocampus and thalamus, whereas γ(3 )is abundant in cerebral cortex and amygdala and γ(4 )in the basal ganglia. Immunohistochemical analysis of the cerebellum determined that both γ(2 )and γ(4 )are present in the molecular layer, particularly in Purkinje cell bodies and dendrites, but have an inverse expression pattern to one another in the dentate cerebellar nucleus. They are also detected in the interneurons of the granule cell layer though only γ(2 )is clearly detected in granule cells. The hippocampus stains for γ(2 )and γ(4 )throughout the layers of the every CA region and the dentate gyrus, whilst γ(3 )appears to be localized particularly to the pyramidal and granule cell bodies. When co-expressed in Xenopus oocytes with a Ca(V)2.1/β(4 )VDCC complex, either in the absence or presence of an α2δ(2 )subunit, neither γ(2 )nor γ(4 )significantly modulated the VDCC peak current amplitude, voltage-dependence of activation or voltage-dependence of steady-state inactivation. CONCLUSION: The human γ(2), γ(3 )and γ(4 )stargazin-like proteins are detected only in the CNS and display differential distributions among brain regions and several cell types in found in the cerebellum and hippocampus. These distribution patterns closely resemble those reported by other laboratories for the rodent orthologues of each protein. Whilst the fact that neither γ(2 )nor γ(4 )modulated the properties of a VDCC complex with which they could associate in vivo in Purkinje cells adds weight to the hypothesis that the principal role of these proteins is not as auxiliary subunits of VDCCs, it does not exclude the possibility that they play another role in VDCC function

    Involvement of CaV2.2 channels and α2δ-1 in homeostatic synaptic plasticity in cultured hippocampal neurons

    Get PDF
    In the mammalian brain, presynaptic CaV2 channels play a pivotal role for synaptic transmission by mediating fast neurotransmitter exocytosis via influx of Ca2+ into the active zone of presynaptic terminals. However, the distribution and modulation of CaV2.2 channels at plastic hippocampal synapses remains to be elucidated. Here, we assess CaV2.2 channels during homeostatic synaptic plasticity, a compensatory form of homeostatic control preventing excessive or insufficient neuronal activity during which extensive active zone remodelling has been described. We show that chronic silencing of neuronal activity in mature hippocampal cultures resulted in elevated presynaptic Ca2+ transients, mediated by increased levels of CaV2.2 channels at the presynaptic site. This work focussed further on the role of α2δ-1 subunits, important regulators of synaptic transmission and CaV2.2 channel abundance at the presynaptic membrane. We find that α2δ-1-overexpression reduces the contribution of CaV2.2 channels to total Ca2+ flux without altering the amplitude of the Ca2+ transients. Levels of endogenous α2δ-1 decreased during homeostatic synaptic plasticity, whereas the overexpression of α2δ-1 prevented homeostatic synaptic plasticity in hippocampal neurons. Together, this study reveals a key role for CaV2.2 channels and novel roles for α2δ-1 during synaptic plastic adaptation

    Nerve injury increases native CaV2.2 trafficking in dorsal root ganglion mechanoreceptors

    Get PDF
    Neuronal N-type (CaV2.2) voltage-gated calcium channels are essential for neurotransmission from primary afferent terminals in the dorsal horn. In this study we have utilized a knock-in mouse expressing CaV2.2 with an inserted extracellular hemagglutinin-tag (CaV2.2_HA), to visualise the distribution of endogenous CaV2.2 in dorsal root ganglion (DRG) neurons and their primary afferents in the dorsal horn. We examined the effect of partial sciatic nerve ligation (PSNL) and found an increase in CaV2.2_HA only in large and medium dorsal root ganglion neurons, and also in deep dorsal-horn synaptic terminals. Furthermore, there is a parallel increase in co-expression with GFRα1, present in a population of low threshold mechanoreceptors, both in large DRG neurons and in their terminals. The increased expression of CaV2.2_HA in these DRG neurons and their terminals is dependent on the presence of the auxiliary subunit α2δ-1, which is required for channel trafficking to the cell surface and to synaptic terminals, and likely contributes to enhanced synaptic transmission at these synapses following PSNL. In contrast the increase of GFRα1 is not altered in α2δ-1 knockout mice. We also found following PSNL there is patchy loss of glomerular synapses immunoreactive for CaV2.2_HA and CGRP or IB4, restricted to the superficial layers of the dorsal horn. This reduction is not dependent on α2δ-1, and likely reflects partial deafferentation of C-nociceptor presynaptic terminals. Therefore, we can distinguish in this pain model two different events affecting specific DRG terminals, with opposite consequences for CaV2.2_HA expression and function in the dorsal horn

    Proteolytic regulation of calcium channels - avoiding controversy

    Get PDF
    The publication of papers containing data obtained with suboptimal rigor in the experimental design and choice of key reagents, such as antibodies, can result in a lack of reproducibility and generate controversy that can both needlessly divert resources and, in some cases, damage public perception of the scientific enterprise. This exemplary paper by Buonarati et al. (2018)1 shows how a previously published, potentially important paper on calcium channel regulation falls short of the necessary mark, and aims to resolve the resulting controversy

    Three-dimensional structure of CaV3.1: comparison with the cardiac L-type voltage-gated calcium channel monomer architecture.

    Get PDF
    Calcium entry through voltage-gated calcium channels has widespread cellular effects upon a host of physiological processes including neuronal excitability, muscle excitation-contraction coupling, and secretion. Using single particle analysis methods, we have determined the first three-dimensional structure, at 23 A resolution, for a member of the low voltage-activated voltage-gated calcium channel family, CaV3.1, a T-type channel. CaV3.1 has dimensions of approximately 115x85x95 A, composed of two distinct segments. The cytoplasmic densities form a vestibule below the transmembrane domain with the C terminus, unambiguously identified by the presence of a His tag being approximately 65 A long and curling around the base of the structure. The cytoplasmic assembly has a large exposed surface area that may serve as a signaling hub with the C terminus acting as a "fishing rod" to bind regulatory proteins. We have also determined a three-dimensional structure, at a resolution of 25 A, for the monomeric form of the cardiac L-type voltage-gated calcium (high voltage-activated) channel with accessory proteins beta and alpha2delta bound to the ion channel polypeptide CaV1.2. Comparison with the skeletal muscle isoform finds a good match particularly with respect to the conformation, size, and shape of the domain identified as that formed by alpha2. Furthermore, modeling of the CaV3.1 structure (analogous to CaV1.2 at these resolutions) into the heteromeric L-type voltage-gated calcium channel complex volume reveals multiple interaction sites for beta-CaV1.2 binding and for the first time identifies the size and organization of the alpha2delta polypeptides

    T-type Ca2+ and persistent Na+ currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability

    Get PDF
    Summary Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity

    A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    AbstractEpisodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide
    • …
    corecore