115 research outputs found
Holomorphic Factorization for a Quantum Tetrahedron
We provide a holomorphic description of the Hilbert space H(j_1,..,j_n) of
SU(2)-invariant tensors (intertwiners) and establish a holomorphically
factorized formula for the decomposition of identity in H(j_1,..,j_n).
Interestingly, the integration kernel that appears in the decomposition formula
turns out to be the n-point function of bulk/boundary dualities of string
theory. Our results provide a new interpretation for this quantity as being, in
the limit of large conformal dimensions, the exponential of the Kahler
potential of the symplectic manifold whose quantization gives H(j_1,..,j_n).
For the case n=4, the symplectic manifold in question has the interpretation of
the space of "shapes" of a geometric tetrahedron with fixed face areas, and our
results provide a description for the quantum tetrahedron in terms of
holomorphic coherent states. We describe how the holomorphic intertwiners are
related to the usual real ones by computing their overlap. The semi-classical
analysis of these overlap coefficients in the case of large spins allows us to
obtain an explicit relation between the real and holomorphic description of the
space of shapes of the tetrahedron. Our results are of direct relevance for the
subjects of loop quantum gravity and spin foams, but also add an interesting
new twist to the story of the bulk/boundary correspondence.Comment: 45 pages; published versio
Perturbation Theory with a Variational Basis: the Generalized Gaussian Effective Potential
The perturbation theory with a variational basis is constructed and
analyzed.The generalized Gaussian effective potential is introduced and
evaluated up to the second order for selfinteracting scalar fields in one and
two spatial dimensions. The problem of the renormalization of the mass is
discussed in details. Thermal corrections are incorporated. The comparison
between the finite temperature generalized Gaussian effective potential and the
finite temperature effective potential is critically analyzed. The phenomenon
of the restoration at high temperature of the symmetry broken at zero
temperature is discussed.Comment: RevTex, 49 pages, 16 eps figure
Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories
We derive quantum kinetic equations from a quantum field theory implementing
a diagrammatic perturbative expansion improved by a resummation via the
dynamical renormalization group. The method begins by obtaining the equation of
motion of the distribution function in perturbation theory. The solution of
this equation of motion reveals secular terms that grow in time, the dynamical
renormalization group resums these secular terms in real time and leads
directly to the quantum kinetic equation. We used this method to study the
relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear
sigma model. We obtain in relaxation time approximation the pion and sigma
meson relaxation rates. We also find that in large momentum limit emission and
absorption of massless pions result in threshold infrared divergence in sigma
meson relaxation rate and lead to a crossover behavior in relaxation. We then
study the relaxation of charged quasiparticles in scalar electrodynamics
(SQED). While longitudinal, Debye screened photons lead to purely exponential
relaxation, transverse photons, only dynamically screened by Landau damping
lead to anomalous relaxation, thus leading to a crossover between two different
relaxational regimes. We emphasize that infrared divergent damping rates are
indicative of non-exponential relaxation and the dynamical renormalization
group reveals the correct relaxation directly in real time. Finally we also
show that this method provides a natural framework to interpret and resolve the
issue of pinch singularities out of equilibrium and establish a direct
correspondence between pinch singularities and secular terms. We argue that
this method is particularly well suited to study quantum kinetics and transport
in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio
Age, Health and Life Satisfaction Among Older Europeans
In this paper we investigate how age affects the self-reported level of life satisfaction among the elderly in Europe. By using a vignette approach, we find evidence that age influences life satisfaction through two counterbalancing channels. On the one hand, controlling for the effects of all other variables, the own perceived level of life satisfaction increases with age. On the other hand, given the same true level of life satisfaction, older respondents are more likely to rank themselves as “dissatisfied” with their life than younger individuals. Detrimental health conditions and physical limitations play a crucial role in explaining scale biases in the reporting style of older individuals
The Impact of Domestic Energy Efficiency Retrofit Schemes on Householder Attitudes and Behaviours
Retrofitting existing housing stock to improve energy efficiency is often required to meet climate mitigation, public health and fuel poverty targets. Increasing uptake and effectiveness of retrofit schemes requires understanding of their impacts on householder attitudes and behaviours. This paper reports results of a survey of 500 Kirklees householders in the UK, where the Kirklees Warm Zone scheme took place. This was a local government led city-scale domestic retrofit programme that installed energy efficiency measures at no charge in over 50,000 houses. The results highlight key design features of the scheme, socio-economic and attitudinal factors that affected take-up of energy efficiency measures and impacts on behaviour and energy use after adoption. The results emphasise the role that positive feedback plays in reinforcing pro-environmental attitudes and behaviours of participants and in addressing concerns of non-participants. Our findings have implications for the design and operation of future domestic energy efficiency retrofit schemes
Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control
We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach
Quantification of three macrolide antibiotics in pharmaceutical lots by HPLC: Development, validation and application to a simultaneous separation
A new validated high performance liquid chromatographic (HPLC) method with rapid analysis time and high efficiency, for the analysis of erythromycin, azithromycin and spiramycin, under isocratic conditions with ODB RP18 as a stationary phase is described. Using an eluent composed of acetonitrile –2-methyl-2-propanol –hydrogenphosphate buffer, pH 6.5, with 1.5% triethylamine (33:7: up to 100, v/v/v), delivered at a flow-rate of 1.0 mL min-1. Ultra Violet (UV) detection is performed at 210 nm. The selectivity is satisfactory enough and no problematic interfering peaks are observed. The procedure is quantitatively characterized and repeatability, linearity, detection and quantification limits are very satisfactory. The method is applied successfully for the assay of the studied drugs in pharmaceutical dosage forms as tablets and powder for oral suspension. Recovery experiments revealed recovery of 97.13–100.28%
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe
Dopamine, serotonin and impulsivity.
Impulsive people have a strong urge to act without thinking. It is sometimes regarded as a positive trait but rash impulsiveness is also widely present in clinical disorders such as attention deficit hyperactivity disorder (ADHD), drug dependence, mania, and antisocial behaviour. Contemporary research has begun to make major inroads into unravelling the brain mechanisms underlying impulsive behaviour with a prominent focus on the limbic cortico-striatal systems. With this progress has come the understanding that impulsivity is a multi-faceted behavioural trait involving neurally and psychologically diverse elements. We discuss the significance of this heterogeneity for clinical disorders expressing impulsive behaviour and the pivotal contribution made by the brain dopamine and serotonin systems in the aetiology and treatment of behavioural syndromes expressing impulsive symptoms
- …