18 research outputs found

    Reconstituting actin-microtubule crosstalk

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BN/BionanoscienceBN/Marileen Dogterom La

    Understanding force-generating microtubule systems through in vitro reconstitution

    No full text
    Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.BN/Marileen Dogterom LabBN/Bionanoscienc

    Shaping Liposomes by Cell-Free Expressed Bacterial Microtubules

    No full text
    Genetic control over a cytoskeletal network inside lipid vesicles offers a potential route to controlled shape changes and DNA segregation in synthetic cell biology. Bacterial microtubules (bMTs) are protein filaments found in bacteria of the genus Prosthecobacter. They are formed by the tubulins BtubA and BtubB, which polymerize in the presence of GTP. Here, we show that the tubulins BtubA/B can be functionally expressed from DNA templates in a reconstituted transcription-translation system, thus providing a cytosol-like environment to study their biochemical and biophysical properties. We found that bMTs spontaneously interact with lipid membranes and display treadmilling. When compartmentalized inside liposomes, de novo synthesized BtubA/B tubulins self-organize into cytoskeletal structures of different morphologies. Moreover, bMTs can exert a pushing force on the membrane and deform liposomes, a phenomenon that can be reversed by a light-activated disassembly of the filaments. Our work establishes bMTs as a new building block in synthetic biology. In the context of creating a synthetic cell, bMTs could help shape the lipid compartment, establish polarity or directional transport, and assist the division machinery. BN/Christophe Danelon LabBN/Technici en AnalistenBN/Marileen Dogterom La

    Reconstitution of basic mitotic spindles in spherical emulsion droplets

    No full text
    Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule shrinkage into pulling forces, when attached, for example, to cortical dynein or chromosomes. In addition, motor proteins and diffusible cross-linkers within the spindle contribute to spindle architecture by connecting and sliding anti-parallel microtubules. In vivo, it has proven difficult to unravel the relative contribution of individual players to the overall balance of forces. Here we present the methods that we recently developed in our efforts to reconstitute basic mitotic spindles bottom-up in vitro. Using microfluidic techniques, centrosomes and tubulin are encapsulated in water-in-oil emulsion droplets, leading to the formation of geometrically confined (double) microtubule asters. By additionally introducing cortically anchored dynein, plus-end directed microtubule motors and diffusible cross-linkers, this system is used to reconstitute spindle-like structures. The methods presented here provide a starting point for reconstitution of more complete mitotic spindles, allowing for a detailed study of the contribution of each individual component, and for obtaining an integrated quantitative view of the force-balance within the mitotic spindle.BN/Marileen Dogterom LabBN/Bionanoscienc

    Nonspherical Coacervate Shapes in an Enzyme-Driven Active System

    No full text
    Coacervates are polymer-rich droplets that form through liquid-liquid phase separation in polymer solutions. Liquid-liquid phase separation and coacervation have recently been shown to play an important role in the organization of biological systems. Such systems are highly dynamic and under continuous influence of enzymatic and chemical processes. However, it is still unclear how enzymatic and chemical reactions affect the coacervation process. Here, we present and characterize a system of enzymatically active coacervates containing spermine, RNA, free nucleotides, and the template independent RNA (de)polymerase PNPase. We find that these RNA coacervates display transient nonspherical shapes, and we systematically study how PNPase concentration, UDP concentration, and temperature affect coacervate morphology. Furthermore, we show that PNPase localizes predominantly into the coacervate phase and that its depolymerization activity in high-phosphate buffer causes coacervate degradation. Our observations of nonspherical coacervate shapes may have broader implications for the relationship between (bio)chemical activity and coacervate biology.BN/Dimphna Meijer LabBN/Technici en AnalistenBN/BionanoscienceBN/Marileen Dogterom La

    Minimal in vitro systems shed light on cell polarity

    No full text
    Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.BN/Marileen Dogterom LabBN/Liedewij Laan LabBN/Bionanoscienc

    Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells

    No full text
    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.BN/BionanoscienceBN/Marileen Dogterom La

    Multivalency of NDC80 in the outer kinetochore is essential to track shortening microtubules and generate forces

    No full text
    Presence of multiple copies of the microtubule-binding NDC80 complex is an evolutionary conserved feature of kinetochores, points of attachment of chromosomes to spindle microtubules. This may enable multivalent attachments to microtubules, with implications that remain unexplored. Using recombinant human kinetochore components, we show that while single NDC80 complexes do not track depolymerizing microtubules, reconstituted particles containing the NDC80 receptor CENP-T bound to three or more NDC80 complexes do so effectively, as expected for a kinetochore force coupler. To study multivalency systematically, we engineered modules allowing incremental addition of NDC80 complexes. The modules’ residence time on microtubules increased exponentially with the number of NDC80 complexes. Modules with two or more complexes tracked depolymerizing microtubules with increasing efficiencies, and stalled and rescued microtubule depolymerization in a force-dependent manner when conjugated to cargo. Our observations indicate that NDC80, rather than through biased diffusion, tracks depolymerizing microtubules by harnessing force generated during microtubule disassembly.BN/Marileen Dogterom LabBN/Bionanoscienc

    Present and future of synthetic cell development

    No full text
    Scientists are captivated by the prospect of creating a fully synthetic cell, offering the potential to revolutionize biology, medicine and biotechnology. In this Viewpoint, a panel of experts discusses the definitions of a synthetic cell and highlights current achievements, challenges and future opportunities of building such systems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BN/Marileen Dogterom La

    Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling

    No full text
    Errorless chromosome segregation requires load-bearing attachments of the plus ends of spindle microtubules to chromosome structures named kinetochores. How these end-on kinetochore attachments are established following initial lateral contacts with the microtubule lattice is poorly understood. Two microtubule-binding complexes, the Ndc80 and Ska complexes, are important for efficient end-on coupling and may function as a unit in this process, but precise conditions for their interaction are unknown. Here, we report that the Ska-Ndc80 interaction is phosphorylation-dependent and does not require microtubules, applied force, or several previously identified functional determinants including the Ndc80-loop and the Ndc80-tail. Both the Ndc80-tail, which we reveal to be essential for microtubule end-tracking, and Ndc80-bound Ska stabilize microtubule ends in a stalled conformation. Modulation of force-coupling efficiency demonstrates that the duration of stalled microtubule disassembly predicts whether a microtubule is stabilized and rescued by the kinetochore, likely reflecting a structural transition of the microtubule end.BN/Marileen Dogterom LabBN/Bionanoscienc
    corecore