3 research outputs found

    Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    Get PDF
    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing

    Long-range neural synchronization in attention and perceptual consciousness

    Full text link
    Cognition is dynamic and complex, requiring specific sets of brain areas to cooperate for specific tasks. Neural synchronization is a proposed mechanism for transient functional integration of specific neural populations, enabling feature flexible binding and dynamic assignment of functional connectivity in the brain according to task demands. This thesis addresses the role of neural synchronization in selective attention and perceptual consciousness. The goals of this thesis are to test the hypothesis that synchronization between brain regions is relevant to network dynamics in selective attention and for perceptual organization, and to elucidate the function of synchronization in different frequency ranges. Using a selective visuospatial cuing paradigm it is shown that deploying attention to one visual hemifield yields transient long-distance gamma-band synchronization between contralateral visual cortex and other, widespread, brain regions. This is interpreted as a mechanism for establishing anticipatory biasing of communication in the cortex. Long-distance gamma synchrony, moreover, is periodically 'refreshed' at a theta rate, possibly serving to maintain this gamma network. While local alpha-band activity was found to be greater ipsilateral to the attended visual hemifield, alpha-band synchronization between primary visual cortex and higher visual areas was greater contralateral to attended locations. This suggests that local alpha synchrony is relevant for inhibition, while long-range alpha synchronization enacts functional coupling. The onset of a new conscious percept during binocular rivalry coincides with large-scale gamma-band synchronization which recurs at a theta rate. This suggests that gamma synchronization integrates features into a unified conscious percept while the theta cycle maintains that network. Using an audiovisual speech integration paradigm it is shown that large-scale gamma synchronization is greater when incongruence is detected between auditory and visual streams. This highlights an important distinction: neural synchronization reflects neural integration, not perceptual integration. Perceptual integration typically requires neural integration (feature binding), however, in this case detection of audiovisual mismatches requires cooperation within a distributed network, whereas audiovisual speech integration is largely accomplished in superior temporal cortex. These studies indicate that long-distance gamma synchronization establishes neural integration, the theta cycle maintains gamma synchronous networks, and local and long-range alpha synchrony reflect sustained inhibition and functional coupling mechanisms, respectively.Medicine, Faculty ofGraduat

    Region-specific slowing of alpha oscillations associated with visual-perceptual abilities in children born very preterm

    Get PDF
    Children born very preterm (≤32 weeks GA) without major intellectual or neurological impairments often express selective deficits in visual-perceptual abilities. The alterations in neurophysiological development underlying these problems, however, remain poorly understood. Recent research has indicated that spontaneous alpha oscillations are slowed in children born very preterm, and that atypical alpha-mediated functional network connectivity may underlie selective developmental difficulties in visual-perceptual ability in this group. The present study provides the first source-resolved analysis of slowing of spontaneous alpha oscillations in very preterm children, indicating alterations in a distributed set of brain regions concentrated in areas of posterior parietal and inferior temporal regions associated with visual-perception, as well as prefrontal cortical regions and thalamus. We also uniquely demonstrate that slowing of alpha oscillations is associated with selective difficulties in visual-perceptual ability in very preterm children. These results indicate that region-specific slowing of alpha oscillations contribute to selective developmental difficulties prevalent in this population
    corecore