92 research outputs found

    Iterative time-reversal for multi-frequency hyperthermia

    Get PDF
    Time-reversal (TR) is a known wideband array beam-forming technique that has been suggested as a treatment planning alternative in deep microwave hyperthermia for cancer treatment. While the aim in classic TR is to focus the energy at a specific point within the target, no assumptions are made on secondary lobes that might arise in the healthy tissues. These secondary lobes, together with tissue heterogeneity, may result in hot-spots (HSs), which are known to limit the efficiency of the thermal dose delivery to the tumor. This paper proposes a novel wideband TR focusing method that iteratively shifts the focus away from HSs and towards cold-spots from an initial TR solution, a procedure that improves tumor coverage and reduces HSs. We verify this method on two different applicator topologies and several target volume configurations. The algorithm is deterministic and runs within seconds, enabling its use for real-time applications. At the same time, it yields results comparable to those obtained with global stochastic optimizers such as Particle Swarm

    The hot-to-cold spot quotient for SAR-based treatment planning in deep microwave hyperthermia

    Get PDF
    BACKGROUND: A necessary precondition for a successful microwave hyperthermia (HT) treatment delivered by phased arrays is the ability of the HT applicator to selectively raise the temperature of the entire tumor volume. SAR-based treatment plan (HTP) optimization methods exploit the correlation between specific absorption rate (SAR) and temperature increase in order to determine the set of steering parameters for optimal focusing, while allowing for lower model complexity. Several cost functions have been suggested in the past for this optimization problem. However, their correlation with high and homogeneous tumor temperatures remains sub-optimal in many cases. Previously, we proposed the hot-to-cold spot quotient (HCQ) as a novel cost function for SAR-based HTP optimization and showed its potential to address these issues. MATERIALS AND METHODS: In this work, we validate the HCQ on a standard ESHO patient repository within single and multi-frequency contexts. We verify its correlation with clinical SAR and temperature indexes, and compare it to HTPs obtained using a commonly accepted cost-function for SAR-based HTP (hot-spot to target quotient, HTQ). RESULTS AND DISCUSSION: The results show that low HCQ values produce better SAR (TC50, TC75) and temperature metrics (T50, T90) than HTQ in most patient models and frequency settings. For the deep-seated tumors, the correlation between the clinical indicators and 1/HCQ is more favorable than the correlation exhibited by 1/HTQ. CONCLUSION: The validation confirms the ability of HCQ to promote target coverage and hot-spot suppression in SAR-based HTP optimization, resulting in higher SAR and temperature indexes for deep-seated tumors

    Suitability of eigenvalue beam-forming for discrete multi-frequency hyperthermia treatment planning

    Get PDF
    Purpose: Thermal dose delivery in microwave hyperthermia for cancer treatment is expected to benefit from the introduction of ultra-wideband (UWB)-phased array applicators. A full exploitation of the combination of different frequencies to improve the deposition pattern is, however, a nontrivial problem. It is unclear whether the cost functions used for hyperthermia treatment planning (HTP) optimization in the single-frequency setting can be meaningfully extended to the UWB case. Method: We discuss the ability of the eigenvalue (EV) and a novel implementation of iterative-EV (i-EV) beam-forming methods to fully exploit the available frequency spectrum when a discrete set of simultaneous operating frequencies is available for treatment. We show that the quadratic power deposition ratio solved by the methods can be maximized by only one frequency in the set, therefore rendering EV inadequate for UWB treatment planning. We further investigate whether this represents a limitation in two realistic test cases, comparing the thermal distributions resulting from EV and i-EV to those obtained by optimizing for other nonlinear cost functions that allow for\ua0multi-frequency. Results: The classical EV-based single-frequency HTP yields systematically lower target SAR deposition and temperature values than nonlinear HTP. In a larynx target, the proposed single-frequency i-EV scheme is able to compensate for this and reach temperatures comparable to those given by global nonlinear optimization. In a meninges target, the multi-frequency setting outperforms the single-frequency one, achieving better target coverage and (Formula presented.) higher (Formula presented.) in the tumor than single-frequency-based\ua0HTP. Conclusions: Classical EV performs poorly in terms of resulting target temperatures. The proposed single-frequency i-EV scheme can be a viable option depending on the patient and tumor to be treated, as long as the proper operating frequency can be selected across a UWB range. Multi-frequency HTP can bring a considerable benefit in regions typically difficult to treat such as the\ua0brain

    Antenna Arrangement in UWB Helmet Brain Applicators for Deep Microwave Hyperthermia

    Get PDF
    Deep microwave hyperthermia applicators are typically designed as narrow-band conformal antenna arrays with equally spaced elements, arranged in one or more rings. This solution, while adequate for most body regions, might be sub-optimal for brain treatments. The introduction of ultra-wide-band semi-spherical applicators, with elements arranged around the head and not necessarily aligned, has the potential to enhance the selective thermal dose delivery in this challenging anatomical region. However, the additional degrees of freedom in this design make the problem non-trivial. We address this by treating the antenna arrangement as a global SAR-based optimization process aiming at maximizing target coverage and hot-spot suppression in a given patient. To enable the quick evaluation of a certain arrangement, we propose a novel E-field interpolation technique which calculates the field generated by an antenna at any location around the scalp from a limited number of initial simulations. We evaluate the approximation error against full array simulations. We demonstrate the design technique in the optimization of a helmet applicator for the treatment of a medulloblastoma in a paediatric patient. The optimized applicator achieves 0.3\ua0 (Formula presented.) C higher T90 than a conventional ring applicator with the same number of elements

    An ultra-wideband compact design for hyperthermia: Open ridged-waveguide antenna

    Get PDF
    Antennas are the building block of radiative hyperthermia (HT) applicators. This study proposes a compact UWB antenna specifically tailored to meet the requirements for deep HT array applicators. The proposed Open Ridged-Waveguide (ORWG) antenna, which is an adaptation of a double-ridged horn antenna, operates over the frequency band of 400-800 MHz. It was experimentally assessed as a single element. The quality metrics considered were reflection coefficient, penetration depth, effective field size (EFS), and mutual coupling. The design shows a 75.5% fractional bandwidth with a reflection coefficient measured to be below -10 dB from 367 up to 820 MHz. The EFS is greater than the physical dimensions of the 3-by-4 cm aperture. The mutual coupling between two adjacent elements in the array, measured in a flat phantom arrangement, is lower than -30 dB throughout the entire band. The antenna\u27s performance was further tested in two deep HT scenarios in order to assess the mutual coupling and focussing abilities while in the array configuration. To this end, phased array applicators consisting of 10 and 16 ORWG antennas were simulated in CST, and the results are presented for a homogeneous cylindrical muscle phantom and a realistic patient model, respectively. The good agreement between the simulated and measured results suggests that the antenna can be successfully used for HT

    Self-calibration algorithms for microwave hyperthermia antenna arrays

    Get PDF
    In deep microwave hyperthermia (MW-HT), antenna arrays are used to generate an interference pattern which focuses energy in the tumor location. These arrays are subject to a number of disturbances which must be compensated for through calibration. This paper proposes and analyzes a pair of self-calibration algorithms, i.e. calibration procedures which rely only on S-matrix measurements of the N-port array applicator device, avoiding the need for external references and making real-time in-treatment calibration possible. Two algorithms are analyzed by means of simulations and experiments in terms of reliability and sensitivity to different kinds of disturbances. The results show that one of two implemented algorithms can converge to the same calibration values obtained when using an external calibration reference (monopole antenna)

    Microwave thermometry with potential application in non-invasive monitoring of hyperthermia

    Get PDF
    Integration of an adaptive finite element method (AFEM) with a conventional least squares method has been presented. As a 3D full-wave forward solver, CST Microwave Studio has been used to model and extract both electric field distribution in the region of interest (ROI) and S-parameters of a circular array consisting of 16 monopole antennas. The data has then been fed into a differential inversion scheme to get a qualitative indicator of how the temperature distribution evolves over a course of the cooling process of a heated object. Different regularization techniques within the Tikhonov framework are also discussed, and a balancing principle for optimal choice of the regularization parameter was used to improve the image reconstruction quality of every 2D slice of the final image. Targets are successfully imaged via proposed numerical methods

    A phased array applicator based on open ridged-waveguide antenna for microwave hyperthermia

    Get PDF
    Radiative hyperthermia is a clinically applied cancer treatment modality where antenna design is crucial to achieving therapeutic goals. Serving as the building block of a phased-array configuration, antennas are typically arranged in a cylindrical or elliptical array called applicator. This short communication proposes an elliptical phased array applicator based on a compact, UWB design from the category of double-ridged horn antennas customized for hyperthermia systems. The performance of the antenna, named open ridged-waveguide, has been experimentally assessed based on the quality metrics of the hyperthermic community. The proposed design achieves an ultra-wideband range of operation from 400 to 800 MHz with an aperture size of 3 by 4 cm. Moreover, thanks to the shielding provided by the metallic housing, the design proves good isolation better than -30 dB throughout the band. The power deposition capability of the proposed applicator followed by the thermal analysis is also investigated for a realistic headand neck patient model. The results indicate very good quality metrics achieved in the treatment planning of the patient

    Design of a wideband multi-channel system for time reversal hyperthermia

    Get PDF
    Purpose: To design and test a wideband multi-channel amplifier system for time reversal (TR) microwave hyperthermia, operating in the frequency range 300 MHz-1 GHz, enabling operation in both pulsed and continuous wave regimes. This is to experimentally verify that adaptation of the heating pattern with respect to tumour size can be realised by varying the operating frequency of the antennas and potentially by using Ultra-wideband (UWB) pulse sequences instead of pure harmonic signals. Materials and methods: The proposed system consists of 12 identical channels driven by a common reference signal. The power and phase settings are applied with resolutions of 0.1W and 0.1 degrees, respectively. Using a calibration procedure, the measured output characteristics of each channel are interpolated using polynomial functions, which are then implemented into a system software algorithm driving the system feedback loop. Results: The maximum output power capability of the system varies with frequency, between 90 and 135W with a relative power error of +/- 6%. A phase error in the order of +/- 4 degrees has been achieved within the entire frequency band. Conclusions: The developed amplifier system prototype is capable of accurate power and phase delivery, over the entire frequency band of the system. The output power of the present system allows for an experimental verification of a recently developed TR-method on phantoms or animals. The system is suitable for further development for head and neck tumours, breast or extremity applications

    Hydrogels as a water bolus during hyperthermia treatment

    Get PDF
    The feasibility of using hydrogels as a water bolus during hyperthermia treatment was assessed. Three types of gels, high methoxyl (HM) pectin/alginate, xanthan/locust bean gum (LBG) and xanthan/LBG/agarose were evaluated based on their dielectric, rheological and mechanical properties. The most suitable, xanthan/LBG/agarose gel was further used as a water bolus in a hyperthermia array applicator. The gels composed of polysaccharides carrying low charge displayed dielectric properties close to those of water, while the dielectric properties of HM pectin/alginate gel was deemed unsuitable for the current application. The mechanical examination shows that the xanthan/LBG gel has a non-brittle behaviour at room temperature, in contrast to the agarose gel. The moduli of the xanthan/LBG gel weaken however considerably between the temperature range of 40 \ub0C and 50 \ub0C, reducing its potential to be used as water bolus. The ternary system of xanthan/LBG/agarose had advantageous behaviour as it was dominated by the thermal hysteresis typical of agarose upon temperature increase, but governed by the typical non-brittle behaviour of the xanthan/LBG at low temperatures. The final evaluation within the hyperthermia applicator showed excellent signal transmission from the antennas. The agarose/xanthan/LBG gel reduced the scattering of electromagnetic waves, enabled a tight closure between the body and the antennas, and offered a less bulky solution than the currently used water-filled plastic bags. The results presented here open up a new application area for hydrogels in improving heat delivery during hyperthermia treatment and other near-field microwave applications
    • …
    corecore