37 research outputs found
HIV Antigen Incorporation within Adenovirus Hexon Hypervariable 2 for a Novel HIV Vaccine Approach
Adenoviral (Ad) vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. However, in some cases these conventional Ad-based vaccines have had sub-optimal clinical results. These sub-optimal results are attributed in part to pre-existing Ad serotype 5 (Ad5) immunity. In order to circumvent the need for antigen expression via transgene incorporation, the “antigen capsid-incorporation” strategy has been developed and used for Ad-based vaccine development in the context of a few diseases. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. The major capsid protein hexon has been utilized for these capsid incorporation strategies due to hexon's natural role in the generation of anti-Ad immune response and its numerical representation within the Ad virion. Using this strategy, we have developed the means to incorporate heterologous peptide epitopes specifically within the major surface-exposed domains of the Ad capsid protein hexon. Our study herein focuses on generation of multivalent vaccine vectors presenting HIV antigens within the Ad capsid protein hexon, as well as expressing an HIV antigen as a transgene. These novel vectors utilize HVR2 as an incorporation site for a twenty-four amino acid region of the HIV membrane proximal ectodomain region (MPER), derived from HIV glycoprotein gp41 (gp41). Our study herein illustrates that our multivalent anti-HIV vectors elicit a cellular anti-HIV response. Furthermore, vaccinations with these vectors, which present HIV antigens at HVR2, elicit a HIV epitope-specific humoral immune response
Adenovirus Gene Transfer to Amelogenesis Imperfecta Ameloblast-Like Cells
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including “pK7” and/or “RGD” motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber “knob” domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both αvβ3/αvβ5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
Identification and space-time evolution of vortex-like motion of atoms in a loaded solid
The paper studies the redistribution of internal stresses and atomic displacements in a preloaded copper crystallite using the molecular dynamics method. It is shown that relaxation within the crystallite volume is accompanied by the formation of dynamic structures in which atomic displacements produce a coherent system of vortex lines. In so doing, the displacement of atoms in neighboring vortex structures has the opposite sign of the angular velocities. The evolution of the dynamic vortex structures is analyzed using an original technique for identifying the vortex motion in the space of a vector variable with a discrete step. It is shown that a system of dynamic vortices and antivortices can propagate inside the crystallite, ensuring the transfer of stresses from the bulk of the loaded material to its unloaded periphery in order to preserve continuity. The developed technique has revealed that the lifetime of such defects depends on their size and ranges from fractions to tens of picoseconds. The simulation results correlate well with the experimental electron microscopy data on the estimation of spatial parameters and lattice curvature during strain localization in the region of elastic distortions
Identification and space-time evolution of vortex-like motion of atoms in a loaded solid
The paper studies the redistribution of internal stresses and atomic displacements in a preloaded copper crystallite using the molecular dynamics method. It is shown that relaxation within the crystallite volume is accompanied by the formation of dynamic structures in which atomic displacements produce a coherent system of vortex lines. In so doing, the displacement of atoms in neighboring vortex structures has the opposite sign of the angular velocities. The evolution of the dynamic vortex structures is analyzed using an original technique for identifying the vortex motion in the space of a vector variable with a discrete step. It is shown that a system of dynamic vortices and antivortices can propagate inside the crystallite, ensuring the transfer of stresses from the bulk of the loaded material to its unloaded periphery in order to preserve continuity. The developed technique has revealed that the lifetime of such defects depends on their size and ranges from fractions to tens of picoseconds. The simulation results correlate well with the experimental electron microscopy data on the estimation of spatial parameters and lattice curvature during strain localization in the region of elastic distortions
Multidirectional flexibility analysis of anterior and posterior lumbar artificial disc reconstruction: in vitro human cadaveric spine model.
The in vitro multidirectional flexibility analysis was conducted to investigate the initial biomechanical effect of biomimetic artificial intervertebral disc replacement from either anterior or posterior approach in a cadaveric lumbosacral spine model. Two designs of anterior total and posterior subtotal artificial discs were developed using bioactive three-dimensional fabric and bioresorbable hydroxyapatite/poly-l-lactide material (3DF disc). Both models were designed to obtain the stable interface bonding to vertebral endplates with maximum surface area occupation. Using seven cadaveric lumbosacral spines, the following three anterior reconstruction methods were sequentially performed at L4–5 level: anterior 3DF disc replacement; anterior BAK cages (BAK); and posterior pedicle screw fixation and anterior BAK cages combined (BAK + PS). The L2–3 level received two methods of posterior reconstructions: subtotal 3DF disc replacement (two implants), and posterior interbody cages and pedicle screw fixation (PLIF). Six unconstrained pure moments were applied and three-dimensional segmental motions were measured with an optoelectronic motion measurement system. The center of rotation (COR) calculation was conducted radiographically using flexion-extension films. Both anterior and posterior 3DF replacements statistically demonstrated equivalent range of motions (ROMs) in all loading modes compared to intact segment. Anterior BAK, BAK + PS, and PLIF demonstrated significantly lower ROMs when compared to intact and 3DF groups (P<0.05). The 3DF reconstruction tended to realign the COR to the posterior third or surrounding position at the operative disc level. The stand-alone lumbar 3DF disc replacement demonstrated biomechanical characteristics nearly equivalent to the intact spinal segments even through anterior or posterior approach in vitro, suggesting an excellent clinical potential
Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model.
OBJECT: This in vitro experimental study was conducted to investigate the initial biomechanical effect of artificial intervertebral disc replacement in the cervical spine. The multidirectional flexibility of replaced and adjacent spinal segments were analyzed using a cadaveric cervical spine model. METHODS: The following three cervical reconstructions were sequentially performed at the C5-6 level after anterior discectomy in seven human cadaveric occipitocervical spines: anterior artificial disc replacement with a bioactive three-dimensional (3D) fabric disc (FD); anterior iliac bone graft; and anterior plate fixation with iliac bone graft. Six unconstrained pure moments were applied with a 6-df spine simulator, and 3D segmental motions at the operative and adjacent segments were measured with an optoelectronic motion measurement system. The 3D FD group demonstrated statistically equivalent ranges of motion (ROMs) when compared with intact values in axial rotation and lateral bending. The 45% increase in flexion-extension ROM was demonstrated in 3D FD group; however, neutral zone analysis did not reach statistical significance between the intact spine and 3D FD. The anterior iliac bone graft and iliac bone graft reconstructions demonstrated statistically lower ROMs when compared with 3D FD in all loading modes (p < 0.05). The adjacent-level ROMs of the 3D FD group demonstrated nearly physiological characteristics at upper and lower adjacent levels. Excellent stability at the interface was maintained during the whole testing without any device displacement and dislodgment. CONCLUSIONS: The stand-alone cervical 3D FD demonstrated nearly physiological biomechanical characteristics at both operative and adjacent spinal segments in vitro, indicating an excellent clinical potential for cervical artificial disc replacement
Vibration and acoustic emission monitoring the stability of peakless tool turning: Experiment and modeling
Acoustic emission (AE) study of steady and chatter mode peakless tool turning has been carried out in order to reveal an acoustic emission response to the workpiece chatter during fine turning. Molecular dynamics simulation of acoustic emission response to chatter was used to find out fundamental system characteristics. Experimental dependencies of AE signal amplitude, median frequency and power spectrum have been obtained and compared to those obtained from the molecular dynamics (MD) simulation. Both experimental and MD simulated AE signal spectral characteristics proved to be sensitive to chatter mode vibrations. Median frequency showed a drop in chatter mode cutting as well as power spectrum shifted to the low frequency range. Such a relationship has been attributed to the growing level of the system potential energy
Vibration and acoustic emission monitoring the stability of peakless tool turning: Experiment and modeling
Acoustic emission (AE) study of steady and chatter mode peakless tool turning has been carried out in order to reveal an acoustic emission response to the workpiece chatter during fine turning. Molecular dynamics simulation of acoustic emission response to chatter was used to find out fundamental system characteristics. Experimental dependencies of AE signal amplitude, median frequency and power spectrum have been obtained and compared to those obtained from the molecular dynamics (MD) simulation. Both experimental and MD simulated AE signal spectral characteristics proved to be sensitive to chatter mode vibrations. Median frequency showed a drop in chatter mode cutting as well as power spectrum shifted to the low frequency range. Such a relationship has been attributed to the growing level of the system potential energy
Recommended from our members
Assessing the use of finite element analysis for mechanical performance evaluation of intervertebral body fusion devices.
BackgroundIntervertebral body fusion devices (IBFDs) are a widely used type of spinal implant placed between two vertebral bodies to stabilize the spine for fusion in the treatment of spinal pathologies. Assessing mechanical performance of these devices is critical during the design, verification, and regulatory evaluation phases of development. While traditionally evaluated with physical bench testing, empirical assessments are at times supplemented with computational models and simulations such as finite element analysis (FEA). However, unlike many mechanical bench tests, FEA lacks standardized practices and consistency of implementation.ObjectivesThe objectives of this study were twofold. First, to identify IBFD 510(k) submissions containing FEA and conduct a comprehensive review of the elements provided in the FEA reports. Second, to engage with spinal device manufacturers through an anonymous survey and assess their practices for implementing FEA.MethodsFirst, a retrospective analysis of 510(k) submissions for IBFDs cleared by the FDA between 2013 and 2017 was performed. The contents of FEA test reports were quantified according to FDA guidance. Second, a survey inquiring about the use of FEA was distributed to industry and academic stakeholders. The survey asked up to 20 questions relating to modeler experience and modeling practices.ResultsSignificant gaps were present in model test reports that deemed the data unreliable and, therefore, unusable for regulatory decision-making in a high percentage of submissions. Nonetheless, the industry survey revealed most stakeholders employ FEA during device evaluation and are interested in more prescriptive guidelines for executing IBFD models.ConclusionsThis study showed that while inconsistencies and gaps in FEA execution do exist within the spinal device community, the stakeholders are eager to work together in developing standardized approaches for executing computational models to support mechanical performance assessment of spinal devices in regulatory submissions