2 research outputs found

    Development and size distribution of polystyrene/ZnO nanofillers

    No full text
    Abstract : In this paper, the preparation and characterization of ZnO nanofillers from polystyrene (PS) polymer waste for use as reinforcement was presented. This was done to achieve a better means of upcycling polymer wastes that have become social menace in recent times. The PS/ZnO nanofillers was synthesized through the hydrothermal synthesis of nanocomposites in an enclosed reactor. The reactor was kept in an oven at a specified temperature for a period. A product obtained was characterized using Fourier transform infrared (FTIR) analysis and Particle size analyser (PSA). The FTIR was utilized to determine the functional groups present in the synthesized nanofillers. The Particle size analyser was used to determine the distribution of particle size within the polymer matrix. The absorption peak obtained in the FTIR analysis confirmed the presence of ZnO in the synthesized material and the results from particle size analysis showed that about 80% of the particle was accommodated within the whole sample

    Optical properties of bimetallic (SrO-K2O) nanofillers

    No full text
    Abstract : In this study, bimetallic nanofiller capable of usage as reinforcement was synthesized from expanded polystyrene (EPS). Bimetallic materials consist of two different metals. The bimetallic nanofiller consisting of SrO and K2O was successfully developed by the hydrothermal method which many researchers have well utilized to prepare nanoparticles in recent times. This study aims to synthesize and characterize bimetallic SrO-K2O, nanofillers from recycled expanded polystyrene (EPS). Products obtained were characterized by Zeta potential and Raman spectra. The Zeta potential was used to determine the surface charge of the nanofillers in solution. The Raman spectroscopy was used to determine the crystalline structure of the nanofillers. Based on the results, it was concluded that stability of nanoparticle materials in acidic medium decreases as the pH increases, and for the basic medium, stability reduces with decrease pH. The mixture of SrO and K2O to form SrO-K2O bimetallic oxide affects the stability of the nanofillers produced both in the acidic and basic medium. The Raman spectra indicated the Dband and Gband of the synthesized SrO, K2O and bimetallic SrO-K2O at 1006, 1008 and 1004 cm-1 and 1598, 1610 and 1606 cm-1 respectively. It was concluded that the shift in band gaps were because of structural changes in the molecules of the recycled expanded polystyrene
    corecore