516 research outputs found
Robust Decentralized Abstractions for Multiple Mobile Manipulators
This paper addresses the problem of decentralized abstractions for multiple
mobile manipulators with 2nd order dynamics. In particular, we propose
decentralized controllers for the navigation of each agent among predefined
regions of interest in the workspace, while guaranteeing at the same time
inter-agent collision avoidance and connectivity maintenance for a subset of
initially connected agents. In that way, the motion of the coupled multi-agent
system is abstracted into multiple finite transition systems for each agent,
which are then suitable for the application of temporal logic-based high level
plans. The proposed methodology is decentralized, since each agent uses local
information based on limited sensing capabilities. Finally, simulation studies
verify the validity of the approach.Comment: Accepted for publication in the IEEE Conference on Decision and
Control, Melbourne, Australia, 201
Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments
This paper presents two novel control methodologies for the cooperative
manipulation of an object by N robotic agents. Firstly, we design an adaptive
control protocol which employs quaternion feedback for the object orientation
to avoid potential representation singularities. Secondly, we propose a control
protocol that guarantees predefined transient and steady-state performance for
the object trajectory. Both methodologies are decentralized, since the agents
calculate their own signals without communicating with each other, as well as
robust to external disturbances and model uncertainties. Moreover, we consider
that the grasping points are rigid, and avoid the need for force/torque
measurements. Load distribution is also included via a grasp matrix
pseudo-inverse to account for potential differences in the agents' power
capabilities. Finally, simulation and experimental results with two robotic
arms verify the theoretical findings
Position and Orientation Based Formation Control of Multiple Rigid Bodies with Collision Avoidance and Connectivity Maintenance
This paper addresses the problem of position- and orientation-based formation
control of a class of second-order nonlinear multi-agent systems in a D
workspace with obstacles. More specifically, we design a decentralized control
protocol such that each agent achieves a predefined geometric formation with
its initial neighbors, while using local information based on a limited sensing
radius. The latter implies that the proposed scheme guarantees that the
initially connected agents remain always connected. In addition, by introducing
certain distance constraints, we guarantee inter-agent collision avoidance as
well as collision avoidance with the obstacles and the boundary of the
workspace. The proposed controllers employ a novel class of potential functions
and do not require a priori knowledge of the dynamical model, except for
gravity-related terms. Finally, simulation results verify the validity of the
proposed framework
Decentralized Motion Planning with Collision Avoidance for a Team of UAVs under High Level Goals
This paper addresses the motion planning problem for a team of aerial agents
under high level goals. We propose a hybrid control strategy that guarantees
the accomplishment of each agent's local goal specification, which is given as
a temporal logic formula, while guaranteeing inter-agent collision avoidance.
In particular, by defining 3-D spheres that bound the agents' volume, we extend
previous work on decentralized navigation functions and propose control laws
that navigate the agents among predefined regions of interest of the workspace
while avoiding collision with each other. This allows us to abstract the motion
of the agents as finite transition systems and, by employing standard formal
verification techniques, to derive a high-level control algorithm that
satisfies the agents' specifications. Simulation and experimental results with
quadrotors verify the validity of the proposed method.Comment: Submitted to the IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 201
Robust Distance-Based Formation Control of Multiple Rigid Bodies with Orientation Alignment
This paper addresses the problem of distance- and orientation-based formation
control of a class of second-order nonlinear multi-agent systems in 3D space,
under static and undirected communication topologies. More specifically, we
design a decentralized model-free control protocol in the sense that each agent
uses only local information from its neighbors to calculate its own control
signal, without incorporating any knowledge of the model nonlinearities and
exogenous disturbances. Moreover, the transient and steady state response is
solely determined by certain designer-specified performance functions and is
fully decoupled by the agents' dynamic model, the control gain selection, the
underlying graph topology as well as the initial conditions. Additionally, by
introducing certain inter-agent distance constraints, we guarantee collision
avoidance and connectivity maintenance between neighboring agents. Finally,
simulation results verify the performance of the proposed controllers.Comment: IFAC Word Congress 201
Prescribed Performance Control for Signal Temporal Logic Specifications
Motivated by the recent interest in formal methods-based control for dynamic
robots, we discuss the applicability of prescribed performance control to
nonlinear systems subject to signal temporal logic specifications. Prescribed
performance control imposes a desired transient behavior on the system
trajectories that is leveraged to satisfy atomic signal temporal logic
specifications. A hybrid control strategy is then used to satisfy a finite set
of these atomic specifications. Simulations of a multi-agent system, using
consensus dynamics, show that a wide range of specifications, i.e., formation,
sequencing, and dispersion, can be robustly satisfied.Comment: 9 pages - this an extended version of the 56th IEEE Conference on
Decision and Control (2017) versio
Use of radiobiological modeling in treatment plan evaluation and optimization of prostate cancer radiotherapy
There are many tools available that are used to evaluate a radiotherapy treatment plan, such as isodose distribution charts, dose volume histograms (DVH), maximum, minimum and mean doses of the dose distributions as well as DVH point dose constraints. All the already mentioned evaluation tools are dosimetric only without taking into account the radiobiological characteristics of tumors or OARs. It has been demonstrated that although competing treatment plans might have similar mean, maximum or minimum doses they may have significantly different clinical outcomes (Mavroidis et al. 2001). For performing a more complete treatment plan evaluation and comparison the complication-free tumor control probability (P+) and the biologically effective uniform dose (D ) have been proposed (Källman et al. 1992a, Mavroidis et al. 2000). The D concept denotes that any two dose distributions within a target or OAR are equivalent if they produce the same probability for tumor control or normal tissue complication, respectively (Mavroidis et al. 2001)..
Robust Distributed Control Protocols for Large Vehicular Platoons with Prescribed Transient and Steady State Performance
In this paper, we study the longitudinal control problem for a platoon of
vehicles with unknown nonlinear dynamics under both the predecessor-following
and the bidirectional control architectures. The proposed control protocols are
fully distributed in the sense that each vehicle utilizes feedback from its
relative position with respect to its preceding and following vehicles as well
as its own velocity, which can all be easily obtained by onboard sensors.
Moreover, no previous knowledge of model nonlinearities/disturbances is
incorporated in the control design, enhancing in that way the robustness of the
overall closed loop system against model imperfections. Additionally, certain
designer-specified performance functions determine the transient and
steady-state response, thus preventing connectivity breaks due to sensor
limitations as well as inter-vehicular collisions. Finally, extensive
simulation studies and a real-time experiment conducted with mobile robots
clarify the proposed control protocols and verify their effectiveness.Comment: IEEE Transactions on Control Systems Technology, accepte
- …