73 research outputs found
Recommended from our members
A spherical cavity model for quadrupolar dielectrics.
The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ε and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager's theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures
Asymptotic analysis of detonation development at SI engine conditions using computational singular perturbation
The occurrence and intensity of the detonation phenomenon at spark-ignition (SI) engine conditions is investigated, with the objective to successfully predict super-knock and to elucidate the effect of kinetics and transport at the ignition front. The computational singular perturbation (CSP) framework is employed in order to investigate the chemical and transport mechanisms of deflagration and detonation cases in the context of 2D high-fidelity numerical simulations. The analysis revealed that the detonation development is characterised by: (i) stronger explosive dynamics and (ii) enhanced role of convection. The role of chemistry was also found to be pivotal to the detonation development which explained the stronger explosive character of the system, the latter being an indication of the system's reactivity. The role of convection was found to be enhanced at the edge of the detonating front. Moreover, the increased contribution of convection was found to be related mainly to heat convection. Remarkably, the detonation front was mainly characterised by dissipative and not explosive dynamics. Finally, diffusion was found to have negligible role to both examined cases
53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility
Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2fl/-) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination
Recommended from our members
Enhancing quantum efficiency of thin-film silicon solar cells by Pareto optimality
We present a composite design methodology for the simulation and optimization of the solar cell performance. Our method is based on the synergy of different computational techniques and it is especially designed for the thin-film cell technology. In particular, we aim to efficiently simulate light trapping and plasmonic effects to enhance the light harvesting of the cell. The methodology is based on the sequential application of a hierarchy of approaches: (a) full Maxwell simulations are applied to derive the photon’s scattering probability in systems presenting textured interfaces; (b) calibrated Photonic Monte Carlo is used in junction with the scattering matrices method to evaluate coherent and scattered photon absorption in the full cell architectures; (c) the results of these advanced optical simulations are used as the pair generation terms in model implemented in an effective Technology Computer Aided Design tool for the derivation of the cell performance; (d) the models are investigated by qualitative and quantitative sensitivity analysis algorithms, to evaluate the importance of the design parameters considered on the models output and to get a first order descriptions of the objective space; (e) sensitivity analysis results are used to guide and simplify the optimization of the model achieved through both Single Objective Optimization (in order to fully maximize devices efficiency) and Multi Objective Optimization (in order to balance efficiency and cost); (f) Local, Global and “Glocal” robustness of optimal solutions found by the optimization algorithms are statistically evaluated; (g) data-based Identifiability Analysis is used to study the relationship between parameters. The results obtained show a noteworthy improvement with respect to the quantum efficiency of the reference cell demonstrating that the methodology presented is suitable for effective optimization of solar cell devices
53BP1 can limit sister-chromatid rupture and rearrangements driven by a distinct ultrafine DNA bridging-breakage process
Chromosome missegregation acts as one of the driving forces for chromosome instability and cancer development. Here, we find that in human cancer cells, HeLa and U2OS, depletion of 53BP1 (p53-binding protein 1) exacerbates chromosome non-disjunction resulting from a new type of sister-chromatid intertwinement, which is distinct from FANCD2-associated ultrafine DNA bridges (UFBs) induced by replication stress. Importantly, the sister DNA intertwinements trigger gross chromosomal rearrangements through a distinct process, named sister-chromatid rupture and bridging. In contrast to conventional anaphase bridge-breakage models, we demonstrate that chromatid axes of the intertwined sister-chromatids rupture prior to the breakage of the DNA bridges. Consequently, the ruptured sister arms remain tethered and cause signature chromosome rearrangements, including whole-arm (Robertsonian-like) translocation/deletion and isochromosome formation. Therefore, our study reveals a hitherto unreported chromatid damage phenomenon mediated by sister DNA intertwinements that may help to explain the development of complex karyotypes in tumour cells
Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome
Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals
Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study
Background Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2–11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75–1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58–1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91–1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70–1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11–0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50–0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38–0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45–0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health
- …