137 research outputs found

    On Approximating the Sum-Rate for Multiple-Unicasts

    Full text link
    We study upper bounds on the sum-rate of multiple-unicasts. We approximate the Generalized Network Sharing Bound (GNS cut) of the multiple-unicasts network coding problem with kk independent sources. Our approximation algorithm runs in polynomial time and yields an upper bound on the joint source entropy rate, which is within an O(log⁑2k)O(\log^2 k) factor from the GNS cut. It further yields a vector-linear network code that achieves joint source entropy rate within an O(log⁑2k)O(\log^2 k) factor from the GNS cut, but \emph{not} with independent sources: the code induces a correlation pattern among the sources. Our second contribution is establishing a separation result for vector-linear network codes: for any given field F\mathbb{F} there exist networks for which the optimum sum-rate supported by vector-linear codes over F\mathbb{F} for independent sources can be multiplicatively separated by a factor of k1βˆ’Ξ΄k^{1-\delta}, for any constant Ξ΄>0{\delta>0}, from the optimum joint entropy rate supported by a code that allows correlation between sources. Finally, we establish a similar separation result for the asymmetric optimum vector-linear sum-rates achieved over two distinct fields Fp\mathbb{F}_{p} and Fq\mathbb{F}_{q} for independent sources, revealing that the choice of field can heavily impact the performance of a linear network code.Comment: 10 pages; Shorter version appeared at ISIT (International Symposium on Information Theory) 2015; some typos correcte

    Connectivity and equilibrium in random games

    Get PDF
    We study how the structure of the interaction graph of a game affects the existence of pure Nash equilibria. In particular, for a fixed interaction graph, we are interested in whether there are pure Nash equilibria arising when random utility tables are assigned to the players. We provide conditions for the structure of the graph under which equilibria are likely to exist and complementary conditions which make the existence of equilibria highly unlikely. Our results have immediate implications for many deterministic graphs and generalize known results for random games on the complete graph. In particular, our results imply that the probability that bounded degree graphs have pure Nash equilibria is exponentially small in the size of the graph and yield a simple algorithm that finds small nonexistence certificates for a large family of graphs. Then we show that in any strongly connected graph of n vertices with expansion (1+Ξ©(1))log⁑2(n)(1+\Omega(1))\log_2(n) the distribution of the number of equilibria approaches the Poisson distribution with parameter 1, asymptotically as nβ†’+∞n \to +\infty.Comment: Published in at http://dx.doi.org/10.1214/10-AAP715 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Local Graph Coloring and Index Coding

    Full text link
    We present a novel upper bound for the optimal index coding rate. Our bound uses a graph theoretic quantity called the local chromatic number. We show how a good local coloring can be used to create a good index code. The local coloring is used as an alignment guide to assign index coding vectors from a general position MDS code. We further show that a natural LP relaxation yields an even stronger index code. Our bounds provably outperform the state of the art on index coding but at most by a constant factor.Comment: 14 Pages, 3 Figures; A conference version submitted to ISIT 2013; typos correcte
    • …
    corecore