17 research outputs found
Optimal dosage determination of a hypocholesterolemic bitter yam proprietary preparation in diet-induced hypercholesterolemic mice
Coronary heart disease, a condition associated with dyslipidemias including hyperlipidemia and low HDL-C levels, has been an increasing problem in the developing world. Conventional treatment for hyperlipidemia often present with unfavourable side effects, leading to the need for development of drugs from natural products. The hypoglycemic and hypocholesterolemic properties of the Jamaican bitter yam have previously been demonstrated however consumption at a high dosage presents with various adverse effects. This study is therefore geared towards the determination of an optimal dosage for the consumption of a proprietary preparation made from this yam species. Hypercholesterolemic mice were fed the preparation at various dosages (4, 2, 1, 0.5%) for 3 weeks after which they were phlebotomized then euthanized. Organs were stored at -80°C until required for analysis. The optimal dosage for supplementation, which resulted in significant decreases in serum cholesterol and oxidative stress without eliciting adverse effects, was found to be 2%. The results from this study points to the need for future in-depth studies involving dietary supplementation at the 2% supplementation level. 
Diabetes Mellitus and Its Metabolic Complications: The Role of Adipose Tissues
Many approaches have been used in the effective management of type 2 diabetes mellitus. A recent paradigm shift has focused on the role of adipose tissues in the development and treatment of the disease. Brown adipose tissues (BAT) and white adipose tissues (WAT) are the two main types of adipose tissues with beige subsets more recently identified. They play key roles in communication and insulin sensitivity. However, WAT has been shown to contribute significantly to endocrine function. WAT produces hormones and cytokines, collectively called adipocytokines, such as leptin and adiponectin. These adipocytokines have been proven to vary in conditions, such as metabolic dysfunction, type 2 diabetes, or inflammation. The regulation of fat storage, energy metabolism, satiety, and insulin release are all features of adipose tissues. As such, they are indicators that may provide insights on the development of metabolic dysfunction or type 2 diabetes and can be considered routes for therapeutic considerations. The essential roles of adipocytokines vis-a-vis satiety, appetite, regulation of fat storage and energy, glucose tolerance, and insulin release, solidifies adipose tissue role in the development and pathogenesis of diabetes mellitus and the complications associated with the disease
Recommended from our members
Cellular and molecular activities of IP6 in disease prevention and therapy
IP6 (phytic acid) is a naturally occurring compound in plant seeds and grains. It is a poly-phosphorylated inositol derivative that has been shown to exhibit many biological activities that accrue benefits in health and diseases (cancer, diabetes, renal lithiasis, cardiovascular diseases, etc.). IP6 has been shown to have several cellular and molecular activities associated with its potential role in disease prevention. These activities include anti-oxidant properties, chelation of metal ions, inhibition of inflammation, modulation of cell signaling pathways, and modulation of the activities of enzymes and hormones that are involved in carbohydrate and lipid metabolism. Studies have shown that IP6 has anti-oxidant properties and can scavenge free radicals known to cause cellular damage and contribute to the development of chronic diseases such as cancers and cardiovascular diseases, as well as diabetes mellitus. It has also been shown to possess anti-inflammatory properties that may modulate immune responses geared towards the prevention of inflammatory conditions. Moreover, IP6 exhibits anti-cancer properties through the induction of cell cycle arrest, promoting apoptosis and inhibiting cancer cell growth. Additionally, it has been shown to have anti-mutagenic properties, which reduce the risk of malignancies by preventing DNA damage and mutations. IP6 has also been reported to have a potential role in bone health. It inhibits bone resorption and promotes bone formation, which may help in the prevention of bone diseases such as osteoporosis. Overall, IP6’s cellular and molecular activities make it a promising candidate for disease prevention. As reported in many studies, its anti-inflammatory, anti-oxidant, and anti-cancer properties support its inclusion as a dietary supplement that may protect against the development of chronic diseases. However, further studies are needed to understand the mechanisms of action of this dynamic molecule and its derivatives and determine the optimal doses and appropriate delivery methods for effective therapeutic use.Texas A&M University-Corpus Christi supported the publication of this manuscript
New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review
Inositol, or myo-inositol, and associated analog molecules, including myo-inositol hexakisphosphate, are known to possess beneficial biomedical properties and are now being widely studied. The impact of these compounds in improving diabetic indices is significant, especially in light of the high cost of treating diabetes mellitus and associated disorders globally. It is theorized that, within ten years, the global population of people with the disease will reach 578 million individuals, with the cost of care projected to be approximately 2.5 trillion dollars. Natural alternatives to pharmaceuticals are being sought, and this has led to studies involving inositol, and myo-inositol-hexakisphosphate, also referred to as IP6. It has been reported that IP6 can improve diabetic indices and regulate the activities of some metabolic enzymes involved in lipid and carbohydrate metabolism. Current research activities have been focusing on the mechanisms of action of inositol and IP6 in the amelioration of the indices of diabetes mellitus. We demonstrated that an IP6 and inositol combination supplement may regulate insulin secretion, modulate serum leptin concentrations, food intake, and associated weight gain, which may be beneficial in both prediabetic and diabetic states. The supplement attenuates vascular damage by reducing red cell distribution width. Serum HDL is increased while serum triglycerides tend to decrease with consumption of the combination supplement, perhaps due to the modulation of lipogenesis involving reduced serum lipase activity. We also noted increased fecal lipid output following combination supplement consumption. Importantly, liver function was found to be preserved. Concurrently, serum reactive oxygen species production was reduced, indicating that inositol and IP6 supplement consumption may reduce free radical damage to tissues and organs as well as serum lipids and blood glucose by preserving liver function. This review provides an overview of the findings associated with inositol and IP6 supplementation in the effective treatment of diabetes with a view to proposing the potential mechanisms of action
Recommended from our members
New frontiers for the use of IP6 and inositol combination in treating diabetes mellitus: a Review
Inositol, or myo-inositol, and associated analog molecules, including myo-inositol hexakisphosphate, are known to possess beneficial biomedical properties and are now being widely studied. The impact of these compounds in improving diabetic indices is significant, especially in light of the high cost of treating diabetes mellitus and associated disorders globally. It is theorized that, within ten years, the global population of people with the disease will reach 578 million individuals, with the cost of care projected to be approximately 2.5 trillion dollars. Natural alternatives to pharmaceuticals are being sought, and this has led to studies involving inositol, and myo-inositol-hexakisphosphate, also referred to as IP6. It has been reported that IP6 can improve diabetic indices and regulate the activities of some metabolic enzymes involved in lipid and carbohydrate metabolism. Current research activities have been focusing on the mechanisms of action of inositol and IP6 in the amelioration of the indices of diabetes mellitus. We demonstrated that an IP6 and inositol combination supplement may regulate insulin secretion, modulate serum leptin concentrations, food intake, and associated weight gain, which may be beneficial in both prediabetic and diabetic states. The supplement attenuates vascular damage by reducing red cell distribution width. Serum HDL is increased while serum triglycerides tend to decrease with consumption of the combination supplement, perhaps due to the modulation of lipogenesis involving reduced serum lipase activity. We also noted increased fecal lipid output following combination supplement consumption. Importantly, liver function was found to be preserved. Concurrently, serum reactive oxygen species production was reduced, indicating that inositol and IP6 supplement consumption may reduce free radical damage to tissues and organs as well as serum lipids and blood glucose by preserving liver function. This review provides an overview of the findings associated with inositol and IP6 supplementation in the effective treatment of diabetes with a view to proposing the potential mechanisms of action
Evidence That Sleep Is an Indicator of Overtraining during the Competition Phase of Adolescent Sprinters
Although sleep disturbance is a common complaint in overtrained athletes, the role of sleep in the overtraining process is not clear. This study aimed (i) to compare sleep efficiency/quantity at the start of a competition phase in elite adolescent sprinters who adapted to prior training with that in those who maladapt and (ii) to examine the influence of prior training, fatigue, and sleep on performance through a moderated mediation model. Fatigue (via Profile of Mood State) and internal training load (via session rating of perceived exertion and duration of training as volume) were measured in 20 sprinters (mean age: 15.9 ± 1.7 years) across 4 mesocycles (baseline (T1); preparatory (T2); precompetitive (T3); and competitive (T4) phases), over 26 weeks. Performances were assessed during the competitive period (T3, T4), while sleep was monitored (via actigraphy) for a week during T4. It was inferred that sprinters who had increasingly greater fatigue and concomitant decrements in performance (35%) were maladapted to training and the remaining sprinters who improved fatigue and performance (65%) were adapted to training. Sleep efficiency (91 ± 3% vs. 82 ± 3%, p<0.001) and quantity (425 ± 33 min vs. 394 ± 20 min, p<0.001) at the start of T4 were significantly greater in sprinters who adapted. Moreover, higher prior training volume (mean of T1 to T3 training volume) was associated with lower sleep efficiency at the start of T4 (R2 = 0.55, p<0.001) which was associated with poorer performance (R2 = 0.82, p<0.001). Fatigue moderated the indirect effect of prior training volume on performance through its moderation of the effect of sleep efficiency on performance (R2 = 0.89, p<0.001). Impaired sleep as a result of greater prior training volume may be related to performance decrements through fatigue. Athletes should improve sleep during periods of higher training volume to reduce fatigue for better adaptation to training
Contextual factors and sporting success: The relationship between birth date and place of early development on the progression of Jamaican track and field athletes from junior to senior level.
Understanding determinants associated with dropout from sport is important for talent development. This study aimed (i) to determine dropout rates for Jamaican track and field athletes and (ii) to examine contextual factors (i.e., relative age effect and place of development) as potential determinants of junior athletes progressing to the senior level. A sample of 1552 track and field athletes (mean age 18.57±0.41 years) who were finalists at the national high school (junior) championships in Jamaica between 2000 and 2017 were evaluated from the Jamaica Athletics Administrative Association database. The database provided birth date, school attendance and performance results. A retrospective analysis was completed to investigate the relationship between junior and senior successes and dropout rates. Chi-square analyses were conducted to examine the distribution of birth date quartiles based on the selection year. Using the Jamaican census information, the population size of regions where participants attended school were categorized and used as a proxy for athletes' place of development. Results showed that the majority of the participants did not progress to senior levels (81%). The relative age effect was evident for athletes who progressed to the senior level but was not evident for athletes who did not progress. There was a bias towards participants who attended school in regions with a population size between 5000-29 999. This study illuminates some of the contextual factors that may influence the likelihood of progressing from junior to senior levels which may help to inform talent identification, selection and development in the sport of track and field
Abnormal Liver Biochemistry Tests and Acute Liver Injury in COVID-19 Patients: Current Evidence and Potential Pathogenesis
Globally, millions of persons have contracted the coronavirus disease 2019 (COVID-19) over the past several months, resulting in significant mortality. Health care systems are negatively impacted including the care of individuals with cancers and other chronic diseases such as chronic active hepatitis, cirrhosis and hepatocellular carcinoma. There are various probable pathogenic mechanisms that have been presented to account for liver injury in COVID-19 patients such as hepatotoxicity cause by therapeutic drugs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the bile duct cells and hepatocytes, hypoxia and systemic inflammatory response. Liver biochemistry tests such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT) and alkaline phosphatase (ALP) are deranged in COVID-19 patients with liver injury. Hepatocellular damage results in the elevation of serum AST and ALT levels in early onset disease while a cholestatic pattern that develops as the disease progress causes higher levels of ALP, GGT, direct and total bilirubin. These liver biochemistry tests are prognostic markers of disease severity and should be carefully monitored in COVID-19 patients. We conducted a systematic review of abnormal liver biochemistry tests in COVID-19 and the possible pathogenesis involved. Significant findings regarding the severity, hepatocellular pattern, incidence and related clinical outcomes in COVID-19 patients are highlighted
Combined Inositol Hexakisphosphate and Inositol Supplement Consumption Improves Serum Alpha-Amylase Activity and Hematological Parameters in Streptozotocin-Induced Type 2 Diabetic Rats
This study evaluated the effect of combined inositol hexakisphosphate (IP6) and inositol supplement on organ weight, intestinal ATPase activities, complete blood count, and serum analytes in streptozotocin (STZ)-induced type 2 diabetic rats. High-fat diet and a single intraperitoneal injection of streptozotocin (35 mg/kg body weight) were used to induce type 2 diabetes mellitus in Sprague–Dawley rats. The diabetic groups were then treated with either combined IP6 and inositol supplement or glibenclamide for four weeks. Organ weights, intestinal ATPase activities, complete blood count, serum α-amylase, total protein, albumin, and globulin content were determined. Pancreatic weight was significantly reduced while relative kidney and liver weights were elevated in the group treated with combined IP6 and inositol supplement compared to the nondiabetic control. Serum α-amylase activity for the glibenclamide and combination treated groups was significantly improved compared to that of the untreated diabetic group. Red cell distribution width percentage was significantly lower in the combination treated group compared to that in the untreated diabetic group, while intestinal ATPase activities were unaffected by the treatment regime. Combined IP6 and inositol supplement consumption may protect people with diabetes from increased risk of cardiovascular diseases due to the supplement's ability to maintain red cell distribution width percentage towards the normal control group