32 research outputs found

    Silencing of PTK7 in Colon Cancer Cells: Caspase-10-Dependent Apoptosis via Mitochondrial Pathway

    Get PDF
    Protein tyrosine kinase-7 (PTK7) is a catalytically inactive receptor tyrosine kinase (RTK). PTK7 is upregulated in many common human cancers, including colon cancer, lung cancer, gastric cancer and acute myeloid leukemia. The reason for this up-regulation is not yet known. To explore the functional role of PTK7, the expression of PTK7 in HCT 116 cells was examined using small interference (siRNA)-mediated gene silencing. Following transfection, the siRNA successfully suppressed PTK7 mRNA and protein expression. Knocking down of PTK7 in HCT 116 cells inhibited cell proliferation compared to control groups and induced apoptosis. Furthermore, this apoptosis was characterized by decreased mitochondrial membrane potential and activation of caspase-9 and -10. Addition of a caspase-10 inhibitor totally blocked this apoptosis, suggesting that caspase-10 may play a critical role in PTK7-knockdown-induced apoptosis, downstream of mitochondria. These observations may indicate a role for PTK7 in cell proliferation and cell apoptosis and may provide a potential therapeutic pathway for the treatment of a variety of cancers

    Evidence That Aberrant Expression of Tissue Transglutaminase Promotes Stem Cell Characteristics in Mammary Epithelial Cells

    Get PDF
    Cancer stem cells (CSCs) or tumor initiating cells (TICs) make up only a small fraction of total tumor cell population, but recent evidence suggests that they are responsible for tumor initiation and the maintenance of tumor growth. Whether CSCs/TICs originate from normal stem cells or result from the dedifferentiation of terminally differentiated cells remains unknown. Here we provide evidence that sustained expression of the proinflammatory protein tissue transglutaminase (TG2) confers stem cell like properties in non-transformed and transformed mammary epithelial cells. Sustained expression of TG2 was associated with increase in CD44high/CD24low/- subpopulation, increased ability of cells to form mammospheres, and acquisition of self-renewal ability. Mammospheres derived from TG2-transfected mammary epithelial cells (MCF10A) differentiated into complex secondary structures when grown in Matrigel cultures. Cells in these secondary structures differentiated into Muc1-positive (luminal marker) and integrin α6-positive (basal marker) cells in response to prolactin treatment. Highly aggressive MDA-231 and drug-resistant MCF-7/RT breast cancer cells, which express high basal levels of TG2, shared many traits with TG2-transfected MCF10A stem cells but unlike MCF10A-derived stem cells they failed to form the secondary structures and to differentiate into Muc1-positive luminal cells when grown in Matrigel culture. Downregulation of TG2 attenuated stem cell properties in both non-transformed and transformed mammary epithelial cells. Taken together, these results suggested a new function for TG2 and revealed a novel mechanism responsible for promoting the stem cell characteristics in adult mammary epithelial cells

    Tissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells

    Get PDF
    Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44+/CD24-/low cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Three-Dimensional Modal Parameters of Tire

    No full text

    Urban River Transformation and the Landscape Garden City Movement in China

    No full text
    The practice of enhancing existing rivers and creating entirely new waterscapes has exploded in China over the past two decades. In our study of 104 randomly selected cities across China, we identified 14 types of river projects based on grey literature reports and their appearance on sequential aerial imagery, falling into three categories: ‘engineering’, ‘waterfront spaces’ and ‘ecological’ projects. ‘Waterfront spaces’ is the most common (60.5%), followed by ‘engineering’ (28.7%) and ‘ecological’ (10.8%). Using multiple stepwise regression, we found that the types of projects undertaken were strongly influenced by factors such as climate, social-economic setting, and ‘Landscape Garden City’ designation. Designation as a ‘Landscape Garden City’ was correlated with ‘waterfront spaces’, but not ‘engineering’ and ‘ecological’ projects. We found that cities in drier climates (as measured by ‘precipitation minus evaporation’) constructed more projects and they included many projects that impounded seasonal rivers to create year-round water bodies. Based on our results, we conclude that Chinese cities are still in the process of ‘decorating’ rivers, and that the ‘Landscape Garden City’ designation promoted such ‘decorating’ projects, especially ‘linear greening’ projects and ‘public spaces along rivers’. The results also demonstrate that the new river projects in China are often at odds with the local climate

    Prostate Tumor Cells Infected with a Recombinant Influenza Virus Expressing a Truncated NS1 Protein Activate Cytolytic CD8(+) Cells To Recognize Noninfected Tumor Cells

    No full text
    Many viral oncolytic approaches against cancer are based on the ability of specific viruses to replicate in tumors expressing components of the constitutively activated Ras/mitogen-activated protein kinase (MAPK) pathways and/or inhibited or dysregulated alpha/beta interferon (IFN-α/β) response pathways. A major issue when considering these approaches is their applicability to tumors that lack activated Ras. To identify the effector mechanisms activated by oncolytic viruses, we investigated inhibition of proliferation of the prostate cancer line LNCap by the recombinant TR-NS1 influenza A virus, a genetically attenuated influenza A/PR8/34 virus expressing a truncated nonstructural protein (NS1) of 126 amino acids. LNCap cells lack constitutively activated MAPK, extracellular signal-regulated kinase (ERK), and p38 and are resistant to death by IFN-α. Truncation of the NS1 protein of influenza viruses is known to result in viral attenuation due to a reduced ability of the NS1 to inhibit the IFN-α/β response. Infection with TR-NS1 virus rapidly activated ERK-1 more than ERK-2 in LNCap cells. Importantly, TR-NS1 virus infection transiently inhibited cell proliferation and induced apoptosis in LNCap cells. Addition of peripheral blood mononuclear cells (PBMC) and interleukin 12 (IL-12) to TR-NS1 virus-infected LNCap cells (TR-NS1-LNCap) resulted in faster elimination of TR-NS1-LNCap cells compared with LNCap cells. Moreover, TR-NS1-LNCap cells induced IFN-γ in PBMC. The levels of IFN-γ were amplified by IL-12. TR-NS1-LNCap cells also induced tumor-lytic cytotoxic T lymphocytes (CTL). These CTL lysed noninfected LNCap cells in a CD8-dependent manner. Activation of cellular immunity to tumor cells by viruses is an intriguing effector pathway, which should be especially significant for elimination of human tumors that lack activated Ras
    corecore