105 research outputs found
Training a Fast Object Detector for LiDAR Range Images Using Labeled Data from Sensors with Higher Resolution
In this paper, we describe a strategy for training neural networks for object
detection in range images obtained from one type of LiDAR sensor using labeled
data from a different type of LiDAR sensor. Additionally, an efficient model
for object detection in range images for use in self-driving cars is presented.
Currently, the highest performing algorithms for object detection from LiDAR
measurements are based on neural networks. Training these networks using
supervised learning requires large annotated datasets. Therefore, most research
using neural networks for object detection from LiDAR point clouds is conducted
on a very small number of publicly available datasets. Consequently, only a
small number of sensor types are used. We use an existing annotated dataset to
train a neural network that can be used with a LiDAR sensor that has a lower
resolution than the one used for recording the annotated dataset. This is done
by simulating data from the lower resolution LiDAR sensor based on the higher
resolution dataset. Furthermore, improvements to models that use LiDAR range
images for object detection are presented. The results are validated using both
simulated sensor data and data from an actual lower resolution sensor mounted
to a research vehicle. It is shown that the model can detect objects from
360{\deg} range images in real time
Uncertainty Estimation in One-Stage Object Detection
Environment perception is the task for intelligent vehicles on which all
subsequent steps rely. A key part of perception is to safely detect other road
users such as vehicles, pedestrians, and cyclists. With modern deep learning
techniques huge progress was made over the last years in this field. However
such deep learning based object detection models cannot predict how certain
they are in their predictions, potentially hampering the performance of later
steps such as tracking or sensor fusion. We present a viable approaches to
estimate uncertainty in an one-stage object detector, while improving the
detection performance of the baseline approach. The proposed model is evaluated
on a large scale automotive pedestrian dataset. Experimental results show that
the uncertainty outputted by our system is coupled with detection accuracy and
the occlusion level of pedestrians
Towards Safe Autonomous Driving: Capture Uncertainty in the Deep Neural Network For Lidar 3D Vehicle Detection
To assure that an autonomous car is driving safely on public roads, its
object detection module should not only work correctly, but show its prediction
confidence as well. Previous object detectors driven by deep learning do not
explicitly model uncertainties in the neural network. We tackle with this
problem by presenting practical methods to capture uncertainties in a 3D
vehicle detector for Lidar point clouds. The proposed probabilistic detector
represents reliable epistemic uncertainty and aleatoric uncertainty in
classification and localization tasks. Experimental results show that the
epistemic uncertainty is related to the detection accuracy, whereas the
aleatoric uncertainty is influenced by vehicle distance and occlusion. The
results also show that we can improve the detection performance by 1%-5% by
modeling the aleatoric uncertainty.Comment: Accepted to present in the 21st IEEE International Conference on
Intelligent Transportation Systems (ITSC 2018
Multi-Object Tracking with Interacting Vehicles and Road Map Information
In many applications, tracking of multiple objects is crucial for a
perception of the current environment. Most of the present multi-object
tracking algorithms assume that objects move independently regarding other
dynamic objects as well as the static environment. Since in many traffic
situations objects interact with each other and in addition there are
restrictions due to drivable areas, the assumption of an independent object
motion is not fulfilled. This paper proposes an approach adapting a
multi-object tracking system to model interaction between vehicles, and the
current road geometry. Therefore, the prediction step of a Labeled
Multi-Bernoulli filter is extended to facilitate modeling interaction between
objects using the Intelligent Driver Model. Furthermore, to consider road map
information, an approximation of a highly precise road map is used. The results
show that in scenarios where the assumption of a standard motion model is
violated, the tracking system adapted with the proposed method achieves higher
accuracy and robustness in its track estimations
- …