633 research outputs found
Bacterial microevolution and the Pangenome
The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history
Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies
Phylogenetic dating is one of the most powerful and commonly used methods of drawing epidemiological interpretations from pathogen genomic data. Building such trees requires considering a molecular clock model which represents the rate at which substitutions accumulate on genomes. When the molecular clock rate is constant throughout the tree then the clock is said to be strict, but this is often not an acceptable assumption. Alternatively, relaxed clock models consider variations in the clock rate, often based on a distribution of rates for each branch. However, we show here that the distributions of rates across branches in commonly used relaxed clock models are incompatible with the biological expectation that the sum of the numbers of substitutions on two neighbouring branches should be distributed as the substitution number on a single branch of equivalent length. We call this expectation the additivity property. We further show how assumptions of commonly used relaxed clock models can lead to estimates of evolutionary rates and dates with low precision and biased confidence intervals. We therefore propose a new additive relaxed clock model where the additivity property is satisfied. We illustrate the use of our new additive relaxed clock model on a range of simulated and real datasets, and we show that using this new model leads to more accurate estimates of mean evolutionary rates and ancestral dates
Agrotechnologies towards Ecotechnologies the three pillars for developing Eco-design
International audienceTo boost agrotechnologies towards ecotechnologies ("environmental technologies" according to ETAP programme of EU, or "more ecologically productive technologies" in the context of agriculture), we need to strengthen a "triple bottom" system: -To take into account, in "Life Cycle Analysis" methodologies, the natural variability in time and space of these applications in land use. - To develop an overall approach for realistic machinery qualification, in order to feed the environmental burdens accurately through relevant data bases collected on agrotechnologies in real action. - To work on Eco-innovation processes, by deepening specific innovation tools and methods, for implementation of innovative solutions chosen according to LCA results. This paper presents the concept, develops the methods and illustrates them by examples of results on organic spreading technologies
Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone
BACKGROUND
New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype.
AIM
To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England.
METHODS
Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains.
FINDINGS
By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006.
CONCLUSIONS
Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms
PLoS Genet.
Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4x10(-6) (serial isolates) to 4.5x10(-6) (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5-17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude
Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status
p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaig
Recombination and Population Structure in Salmonella enterica
Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species
Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families
Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude
Genital warts and infection with human immunodeficiency virus in high-risk women in Burkina Faso: a longitudinal study
BACKGROUND: Human papillomaviruses are the most common sexually transmitted infections, and genital warts, caused by HPV-6 and 11, entail considerable morbidity and cost. The natural history of genital warts in relation to HIV-1 infection has not been described in African women. We examined risk factors for genital warts in a cohort of high-risk women in Burkina Faso, in order to further describe their epidemiology. METHODS: A prospective study of 765 high-risk women who were followed at 4-monthly intervals for 27 months in Burkina Faso. Logistic and Cox regression were used to identify factors associated with prevalent, incident and persistent genital warts, including HIV-1 serostatus, CD4+ count, and concurrent sexually transmitted infections. In a subset of 306 women, cervical HPV DNA was tested at enrollment. RESULTS: Genital wart prevalence at baseline was 1.6% (8/492) among HIV-uninfected and 7.0% (19/273) among HIV-1 seropositive women. Forty women (5.2%) experienced at least one incident GW episode. Incidence was 1.1 per 100 person-years among HIV-uninfected women, 7.4 per 100 person-years among HIV-1 seropositive women with a nadir CD4+ count >200 cells/μL and 14.6 per 100 person-years among HIV-1 seropositive women with a nadir CD4+ count ≤ 200 cells/μL. Incident genital warts were also associated with concurrent bacterial vaginosis, and genital ulceration. Antiretroviral therapy was not protective against incident or persistent genital warts. Detection of HPV-6 DNA and abnormal cervical cytology were strongly associated with incident genital warts. CONCLUSIONS: Genital warts occur much more frequently among HIV-1 infected women in Africa, particularly among those with low CD4+ counts. Antiretroviral therapy did not reduce the incidence or persistence of genital warts in this population
- …