18,888 research outputs found

    Naturally light invisible axion in models with large local discrete symmetries

    Get PDF
    We show that by introducing appropriate local ZN(N13)Z_N(N\geq13) symmetries in electroweak models it is possible to implement an automatic Peccei-Quinn symmetry keeping at the same time the axion protected against gravitational effects. Although we consider here only an extension of the standard model and a particular 3-3-1 model, the strategy can be used in any kind of electroweak model. An interesting feature of this 3-3-1 model is that if: {\it i)} we add right-handed neutrinos, {\it ii)} the conservation of the total lepton number, and {\it iii)} a Z2Z_2 symmetry, the Z13Z_{13} and the chiral Peccei-Quinn U(1)PQU(1)_{\rm PQ} are both accidental symmetries in the sense that they are not imposed on the Lagrangian but they are just the consequence of the particle content of the model, its gauge invariance, renormalizability and Lorentz invariance. In addition, this model has no domain wall problem.Comment: Some changes and a new reference added, 7 page

    Naturally light invisible axion and local Z_{13} times Z_3 symmetries

    Full text link
    We show that by imposing local Z13Z3Z_{13}\otimes Z_3 symmetries in an SU(2)U(1)SU(2)\otimes U(1) electroweak model we can implement an invisible axion in such a way that (i) the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian; and (ii) the axion is protected from semi classical gravitational effects. In order to be able to implement such a large discrete symmetry, and at the same time allow a general mixing in each charge sector, we introduce right-handed neutrinos and enlarge the scalar sector of the model. The domain wall problem is briefly considered.Comment: PQ charges and typos correcte

    Regularity at infinity of real mappings and a Morse-Sard theorem

    Full text link
    We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C2C^2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the tt-regularity and its bridge toward the ρ\rho-regularity which implies topological triviality at infinity

    Closing the SU(3)LU(1)XSU(3)_L\otimes U(1)_X Symmetry at Electroweak Scale

    Full text link
    We show that some models with SU(3)CSU(3)LU(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)L+RSU(2)_{L+R} symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)XU(1)_X's coupling constant, gXg_X, the sine of the weak mixing angle sinθW\sin\theta_W, and the mass of the WW boson, MWM_W. In the limit in which this symmetry is valid it avoids the tree level mixing of the ZZ boson of the Standard Model with the extra ZZ^\prime boson. We have verified that the oblique TT parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)L+RSU(3)_{L+R} custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, being the see-saw mechanism mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)L+RSU(3)L+RSU(2)_{L+R}\subset SU(3)_{L+R} symmetry implies that the extra non-standard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.Comment: 32 pages, no figure, RevTeX. Some typos correcte

    Interaction-induced topological properties of two bosons in flat-band systems

    Full text link
    In flat-band systems, destructive interference leads to the localization of non-interacting particles and forbids their motion through the lattice. However, in the presence of interactions the overlap between neighbouring single-particle localized eigenstates may enable the propagation of bound pairs of particles. In this work, we show how these interaction-induced hoppings can be tuned to obtain a variety of two-body topological states. In particular, we consider two interacting bosons loaded into the orbital angular momentum l=1l=1 states of a diamond-chain lattice, wherein an effective π\pi flux may yield a completely flat single-particle energy landscape. In the weakly-interacting limit, we derive effective single-particle models for the two-boson quasiparticles which provide an intuitive picture of how the topological states arise. By means of exact diagonalization calculations, we benchmark these states and we show that they are also present for strong interactions and away from the strict flat-band limit. Furthermore, we identify a set of doubly localized two-boson flat-band states that give rise to a special instance of Aharonov-Bohm cages for arbitrary interactions
    corecore