23 research outputs found

    Rebound Dynamics of Two Droplets Successively Impacting an Inclined Surface

    No full text
    The dynamic behaviors of two droplets successively impacting inclined surfaces are simulated by a three-dimensional pseudopotential lattice Boltzmann model based on multi-relaxation-time. The effect of velocity ratio of two successive droplets on the contact time is investigated and two rebounding regimes are identified depending on whether the coalesced droplet retouches the surface or not. Increasing the velocity ratio leads to a stronger interaction between the two droplets and the phenomenon of coalesced droplet retouching the surface is observed when the velocity ratio exceeds a threshold, resulting in a longer contact time. An outcome map of droplet rebounding is obtained at various velocity ratios and contact angles of surface. It is found that the coalesced droplet cannot rebound from the surface at a larger velocity ratio and a lower contact angle of surface. Furthermore, the effect of the length between impact points on the contact time is exhibited, and a longer length is beneficial to coalesced droplet rebounding

    Contact Time of Double-Droplet Impacting Superhydrophobic Surfaces with Different Macrotextures

    No full text
    The contact time of droplets on superhydrophobic surfaces is an especially important parameter in many applications, such as self-cleaning, anti-icing, and spray cooling. In this study, we investigate the contact time of two identical droplets simultaneously impacting superhydrophobic surfaces decorated with three different macrotextures, i.e., bathtub-like groove (S1), vertical wall (S2), and rectangular ridge (S3), via lattice Boltzmann method (LBM) simulations. We explore influences of the geometrical parameters of the macrotextures, as well as the center-to-center distance of the two droplets, on the contact time. We found a new rebounding regime with significantly reduced contact times. We demonstrate that, as compared with impacting a smooth superhydrophobic surface, the contact time can be decreased by 41% for macrotexture S1 because of the asymmetric spreading and retraction of droplets motivated by the macrotexture. We also demonstrate that the new regime depends on the center-to-center distance and geometrical parameters of the macrotextures
    corecore