8 research outputs found
Recommended from our members
U.S. Fossil Fuel Technologies for Thailand
The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs
Societal-Equity-Enhancing Criteria and Facility-Host Incentives Supporting Five Key Elements in the January 2012 Blue Ribbon Commission Report -13015
ABSTRACT In February 2009, the Obama Administration announced it would abandon USA's only candidate SNF/HLW-disposal facility since 1987. In 2010, all related activities were stopped and the Blue Ribbon Commission on America's Nuclear Future was established "to recommend a new strategy for managing the back end of the nuclear fuel cycle", which it did in January 2012, emphasizing eight key elements. However, Key Element 1, "A new, consent-based approach to siting future nuclear facilities", is qualitative/indeterminate rather than quantitative/measurable. It is thus highly-susceptible to semantic permutations that could extend rather than, as intended, expedite the siting of future nuclear facilities unless it also defines: a) Whose consent is needed?; and b) What constitutes consent? The following "generic", radiation-risk-and societal-equity-based criteria address these questions: 1. Identify areas affected by projected radiation and other health risks from: a. The proposed nuclear facility (facility stakeholders); and b. The related nuclear-materials-transportation routes (transportation stakeholders); then 2. Surround each stakeholder area with a buffer zone and use this enlarged foot print to identify: a. Stakeholder hosts; and b. Areas not hosting any stakeholder category (interested parties). 3. Define "consent-based" as being at least 60 percent of the "population" in the respective stakeholder category and apply this yardstick to both "in favor" and "against" votes. Although criteria 1 and 2 also need facility-based definitions to make Key Element 1 measurable, the described siting approach, augmented by related facility-host incentives, would expedite the schedule and reduce the cost for achieving Key Elements 4-6 and 8, politics permitting
Recommended from our members
A Holistic Approach for Disposition of Long-Lived Radioactive Materials
During the past 45 years, one of the most challenging scientific, engineering, socio-economic, and political tasks and obligations of our time has been to site and develop technical, politically acceptable, solutions to the safe disposition of long-lived radioactive materials (LLRMs). However, at the end of the year 2002, the Waste Isolation Pilot Plant (WIPP) site in the United States of America (USA) hosts the world's only operating LLRM-disposal system, which (1) is based on the LLRM-disposal principles recommended by the National Academy of Sciences (NAS) in 1957, i.e., deep geological disposal in a ''stable'' salt vault/repository, (2) complies with the nation's ''Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes'', and (3) may receive 175,584 cubic meters (m3) of transuranic radioactive waste (TRUW)a. Pending the scheduled opening of repositories for once-used nuclear fuel (OUNF) in the USA, Sweden, and Finland in the years 2010, 2015, and 2017, respectively, LLRM-disposal solutions remain the missing link in all national LLRM-disposition programs. Furthermore, for a variety of reasons, many nations with nuclear programs have chosen a ''spectator'' stance in terms of enhancing the global nuclear safety culture and the nuclear renaissance, and have either ''slow-tracked'' or deferred their LLRM-disposal programs to allow time for an informed national consensus to evolve based on LLRM-disposition experiences and solutions gained elsewhere. In the meantime, LLRMs will continue to amass in different types and levels of safeguarded storage facilities around the world. In an attempt to contribute to the enhancement of the global nuclear safety culture and the nuclear renaissance, the authors developed the sample holistic approach for synergistic disposition of LLRMs comprising LLRM-disposition components considered either ''proven'' or ''promising'' by the authors. The fundamental principles of the holistic approach are: (1) Risk minimization; (2) Minimization of the LLRM volume requiring deep geological disposal; and (3) LLRM-disposition flexibility. An integral element of these principles is to allow time for LLRM-disposition solutions to evolve/mature technically, financially, and politically. Furthermore, contingent upon the desired outcome(s), available financial, scientific, and technical resources, and political will, these components may be implemented separately or in combinations by one or a group of nations
Recommended from our members
Markets for Small-Scale, Advanced Coal-Combustion Technologies
This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs