207 research outputs found

    Guaranteed Rank Minimization via Singular Value Projection

    Full text link
    Minimizing the rank of a matrix subject to affine constraints is a fundamental problem with many important applications in machine learning and statistics. In this paper we propose a simple and fast algorithm SVP (Singular Value Projection) for rank minimization with affine constraints (ARMP) and show that SVP recovers the minimum rank solution for affine constraints that satisfy the "restricted isometry property" and show robustness of our method to noise. Our results improve upon a recent breakthrough by Recht, Fazel and Parillo (RFP07) and Lee and Bresler (LB09) in three significant ways: 1) our method (SVP) is significantly simpler to analyze and easier to implement, 2) we give recovery guarantees under strictly weaker isometry assumptions 3) we give geometric convergence guarantees for SVP even in presense of noise and, as demonstrated empirically, SVP is significantly faster on real-world and synthetic problems. In addition, we address the practically important problem of low-rank matrix completion (MCP), which can be seen as a special case of ARMP. We empirically demonstrate that our algorithm recovers low-rank incoherent matrices from an almost optimal number of uniformly sampled entries. We make partial progress towards proving exact recovery and provide some intuition for the strong performance of SVP applied to matrix completion by showing a more restricted isometry property. Our algorithm outperforms existing methods, such as those of \cite{RFP07,CR08,CT09,CCS08,KOM09,LB09}, for ARMP and the matrix-completion problem by an order of magnitude and is also significantly more robust to noise.Comment: An earlier version of this paper was submitted to NIPS-2009 on June 5, 200

    Multi-Scale Link Prediction

    Full text link
    The automated analysis of social networks has become an important problem due to the proliferation of social networks, such as LiveJournal, Flickr and Facebook. The scale of these social networks is massive and continues to grow rapidly. An important problem in social network analysis is proximity estimation that infers the closeness of different users. Link prediction, in turn, is an important application of proximity estimation. However, many methods for computing proximity measures have high computational complexity and are thus prohibitive for large-scale link prediction problems. One way to address this problem is to estimate proximity measures via low-rank approximation. However, a single low-rank approximation may not be sufficient to represent the behavior of the entire network. In this paper, we propose Multi-Scale Link Prediction (MSLP), a framework for link prediction, which can handle massive networks. The basis idea of MSLP is to construct low rank approximations of the network at multiple scales in an efficient manner. Based on this approach, MSLP combines predictions at multiple scales to make robust and accurate predictions. Experimental results on real-life datasets with more than a million nodes show the superior performance and scalability of our method.Comment: 20 pages, 10 figure

    A Divide-and-Conquer Solver for Kernel Support Vector Machines

    Full text link
    The kernel support vector machine (SVM) is one of the most widely used classification methods; however, the amount of computation required becomes the bottleneck when facing millions of samples. In this paper, we propose and analyze a novel divide-and-conquer solver for kernel SVMs (DC-SVM). In the division step, we partition the kernel SVM problem into smaller subproblems by clustering the data, so that each subproblem can be solved independently and efficiently. We show theoretically that the support vectors identified by the subproblem solution are likely to be support vectors of the entire kernel SVM problem, provided that the problem is partitioned appropriately by kernel clustering. In the conquer step, the local solutions from the subproblems are used to initialize a global coordinate descent solver, which converges quickly as suggested by our analysis. By extending this idea, we develop a multilevel Divide-and-Conquer SVM algorithm with adaptive clustering and early prediction strategy, which outperforms state-of-the-art methods in terms of training speed, testing accuracy, and memory usage. As an example, on the covtype dataset with half-a-million samples, DC-SVM is 7 times faster than LIBSVM in obtaining the exact SVM solution (to within 10βˆ’610^{-6} relative error) which achieves 96.15% prediction accuracy. Moreover, with our proposed early prediction strategy, DC-SVM achieves about 96% accuracy in only 12 minutes, which is more than 100 times faster than LIBSVM
    • …
    corecore