4 research outputs found

    Properties of cement mortar containing NaOH-treated Crumb rubber as fine aggregate replacement

    Get PDF
    In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15, and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. Thus, the total number of mixtures was 9. The mortars were tested for its flowability, compressive strength, flexural strength and density. Based on the results, increasing the replacement percentage of fine aggregate by crumb rubber reduced the compressive strength, flexural strength and density of rubberized mortar but increased the flowability. Meanwhile, the treatment of crumb rubber using NaOH solution improved the flowability, compressive strength and flexural strength. The treatment has minor effect on the hardened density of the rubberized mortar

    Effect of Water-Cement Ratio on the Properties of NaOH-Treated Rubberized Mortar

    Get PDF
    In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15 and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. There were three (3) different water-cement ratio used which are 0.45, 0.50 and 0.55. Thus, the total number of mixtures was 27. The mortars were tested for flowability, compressive strength, flexural strength and density. Based on the results, higher water cement ratio and percentage of crumb rubber replacement increased the flowability but lowered the density, compressive strength and flexural strength of the rubberized mortar. It was also discovered that the significant effect of water-cement ratio on the fresh and hardened properties of the rubberized mortar was due to the water content in the mixture. Meanwhile, the use of NaOH as treatment to crumb rubber improved the flowability, compressive strength and flexural strength of the rubberized mortar

    Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar

    No full text
    Geopolymer is a cement free material which uses binder produced by the reaction of the alkaline liquid solution with binding agents. In this study, the performance of geopolymer mortar using Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as binding agents was carried out. The tests conducted in this research were Specific Gravity, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), bulk density and compressive strength at 7th, 14th and 28th days. The results show both POFA and RHA materials fulfilled the criteria as a pozzolanic material. Meanwhile, the cement based mortar has the highest bulk density, followed by POFA based and RHA based geopolymer mortar. The cement based mortar was also identified to have the highest compressive strength due to its densest structure. However, it was found that the RHA based geopolymer mortar has higher compressive strength than the POFA based geopolymer despite its lower density. This is due to the high silica content in RHA which promote more silica-oxygen-silica bonds than POFA

    Performance of Palm Oil Fuel Ash and Rice Husk Ash Based Geopolymer Mortar

    No full text
    Geopolymer is a cement free material which uses binder produced by the reaction of the alkaline liquid solution with binding agents. In this study, the performance of geopolymer mortar using Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as binding agents was carried out. The tests conducted in this research were Specific Gravity, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), bulk density and compressive strength at 7th, 14th and 28th days. The results show both POFA and RHA materials fulfilled the criteria as a pozzolanic material. Meanwhile, the cement based mortar has the highest bulk density, followed by POFA based and RHA based geopolymer mortar. The cement based mortar was also identified to have the highest compressive strength due to its densest structure. However, it was found that the RHA based geopolymer mortar has higher compressive strength than the POFA based geopolymer despite its lower density. This is due to the high silica content in RHA which promote more silica-oxygen-silica bonds than POFA
    corecore