134 research outputs found

    Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces

    Full text link
    It has been determined by density functional theory (DFT) simulations that the extracted permittivities of ultra-thin crystalline gold (Au) films exhibit large anisotropies which are not predicted by classical models or previous experimental determinations of the dielectric function. The optical scattering characteristics of a periodic array of Au discs are simulated with the DFT extracted permittivity and contrasted against those obtained with several commonly used Au permittivity models. It is demonstrated that the DFT-based transmittance spectra for these plasmonic metasurfaces lead to significantly redshifted results when compared to those predicted by standard Drude and Johnson-Christy permittivity models. © 2013 AIP Publishing LLC

    Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: A density functional theory study

    Full text link
    Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity's thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media. © 2013 Optical Society of America

    Experiments on the Low Frequency Barrier Characteristics of Cellular Metamaterial Panels in a Diffuse Sound Field

    Get PDF
    The metamaterial under investigation here consists of a periodic arrangement of unit plates in a grid-like frame such that there is a contrast in the local areal mass between cell interior and cell wall. In the low frequency range and under normal incidence this metamaterial panel exhibits a sound transmission loss significantly larger than the transmission loss of an unstructured panel with the same homogeneous mass per unit area. However, when the incident sound field is diffuse, the relative advantage of the metamaterial barrier is reduced or eliminated. A sequence of experiments is documented to demonstrate that the relative advantage of the metamaterial barrier can be realized even in a diffuse sound field by creating a hybrid barrier system which embeds the metamaterial layer between a normalizing waveguide layer on the incident side and an absorbing layer on the transmitted side. The sound normalizing waveguide layer is a lattice structure, and the absorbing layer is high performance glass fiber mat. By using measurements of the transmission loss of a 1,2 m square panel system the role of each of these components is demonstrated

    Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Get PDF
    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal

    Monte Carlo simulation of subsurface ordering kinetics in an fcc-alloy model

    Full text link
    Within the atom-vacancy exchange mechanism in a nearest-neighbor interaction model we investigate the kinetics of surface-induced ordering processes close to the (001) surface of an fcc A_3B-alloy. After a sudden quench into the ordered phase with a final temperature above the ordering spinodal, T_f > T_sp, the early time kinetics is dominated by a segregation front which propagates into the bulk with nearly constant velocity. Below the spinodal, T_f < T_sp, motion of the segregation wave reflects a coarsening process which appears to be slower than predicted by the Lifschitz-Allen-Cahn law. In addition, in the front-penetrated region lateral growth differs distinctly from perpendicular growth, as a result of the special structure of antiphase boundaries near the surface. Our results are compared with recent experiments on the subsurface ordering kinetics at Cu_3Au (001).Comment: 10 pages, 9 figures, submitted to Phys. Rev. B, in prin

    Mechanical low-frequency filter via modes separation in 3D periodic structures

    Get PDF
    This work presents a strategy to design three-dimensional elastic periodic structures endowed with complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This result relies on a proper organization of the modal characteristics, and it is validated by performing numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission spectrum of the finite structure, obtaining good agreement with numerical predictions. The presented strategy paves the way for the development of a class of periodic structures to be used in robust and reliable wave attenuation over a wide frequency band
    corecore