46 research outputs found

    A Topological Study of Chaotic Iterations. Application to Hash Functions

    No full text
    International audienceChaotic iterations, a tool formerly used in distributed computing, has recently revealed various interesting properties of disorder leading to its use in the computer science security field. In this paper, a comprehensive study of its topological behavior is proposed. It is stated that, in addition to being chaotic as defined in the Devaney's formulation, this tool possesses the property of topological mixing. Additionally, its level of sensibility, expansivity, and topological entropy are evaluated. All of these properties lead to a complete unpredictable behavior for the chaotic iterations. As it only manipulates binary digits or integers, we show that it is possible to use it to produce truly chaotic computer programs. As an application example, a truly chaotic hash function is proposed in two versions. In the second version, an artificial neural network is used, which can be stated as chaotic according to Devaney

    Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies

    Get PDF

    RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    Get PDF
    Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±

    IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes.

    Get PDF
    GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach

    Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4

    Get PDF
    AbstractCystic fibrosis is characterised in the lungs by high levels of neutrophil elastase (NE). NE induces interleukin-8 (IL-8) expression via an IL-1 receptor-associated kinase signalling pathway. Here, we show that these events involve the cell surface membrane bound toll-like receptor 4 (TLR4). We demonstrate that human embryonic kidney (HEK)293 cells transfected with a TLR4 cDNA (HEK-TLR4) express TLR4 mRNA and protein and induce IL-8 promoter activity in response to NE. Treatment of both HEK-TLR4 and human bronchial epithelial cells with NE decreases TLR4 protein expression. Furthermore, a TLR4 neutralising antibody abrogates NE-induced IL-8 production, and induces tolerance to a secondary lipopolysaccharide stimulus. These data implicate TLR4 in NE induced IL-8 expression in bronchial epithelium
    corecore