30 research outputs found

    Novel Alzheimer risk factor IQ motif containing protein K is abundantly expressed in the brain and is markedly increased in patients with Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is complex and highly heterogeneous. Less than 10% of AD cases are early-onset (EOAD) caused by autosomal dominantly inherited mutations in amyloid precursor protein (APP), presenilin 1 (PS1), or presenilin 2 (PS2), each of which can increase Aβ generation and, thus, amyloid plaques. The remaining 90% of cases of AD are late-onset (LOAD) or sporadic. Intense research efforts have led to identification of many genes that increase the risk of AD. An IQ motif containing protein K (IQCK) was recently identified by several investigators as an Alzheimer’s disease risk gene. However, how IQCK increases AD risk is completely unknown. Since IQCK is a novel gene, there is limited information on its physiological characterization. To understand its role in AD, it is first important to determine its subcellular localization, whether and where it is expressed in the brain, and what type of brain cells express the IQCK protein. Therefore, in this study, we show by immunocytochemical (ICC) staining that IQCK is expressed in both the nucleus and the cytoplasm of SH-SY5Y neuroblastoma cells as well as HeLa cells but not in either HMC3 microglial or CHO cells. By immunohistochemistry (IHC), we also show that IQCK is expressed in both mouse and human neurons, including neuronal processes in vivo in the mouse brain. IHC data also show that the IQCK protein is widely expressed throughout the mouse brain, although regional differences were noted. IQCK expression was highest in the brainstem (BS), followed by the cerebellum (CB) and the cortex (CX), and it was lowest in the hippocampus (HP). This finding was consistent with data from an immunoblot analysis of brain tissue homogenates. Interestingly, we found IQCK expression in neurons, astrocytes, and oligodendrocytes using cell-specific antibodies, but IQCK was not detected in microglial cells, consistent with negative in vitro results in HMC3 cells. Most importantly, we found that actin-normalized IQCK protein levels were increased by 2 folds in AD brains relative to normal control (NC) brains. Furthermore, the IQCK protein was found in amyloid plaques, suggesting that IQCK may play a pathogenic role in either Aβ generation or amyloid plaque deposition in AD

    Cellular stress responses and dysfunctional Mitochondrial–cellular senescence, and therapeutics in chronic respiratory diseases

    Get PDF
    The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies

    LRRC25 expression during physiological aging and in mouse models of Alzheimer’s disease and iPSC-derived neurons

    Get PDF
    The leucine-rich repeat-containing protein 25 (LRRC25) is relatively a novel protein with no information on its role in neuronal or brain function. A recent study suggested LRRC25 is a potential risk factor for Alzheimer’s disease (AD). As a first step to understanding LRRC25’s role in the brain and AD, we found LRRC25 is expressed in both cell membranes and cytoplasm in a punctuate appearance in astrocytes, microglia, and neurons in cell lines as well as mouse brain. We also found that LRRC25 expression is both age- and brain region-dependent and that 1-day-old (1D) pups expressed the least amount of LRRC25 protein compared to adult ages. In the APΔE9 mice, immunoblot quantified LRRC25 protein levels were increased by 166% (**p < 0.01) in the cortex (CX) and by 215% (***p < 0.001) in the hippocampus (HP) relative to wild-type (WT) controls. Both the brainstem (BS) and cerebellum (CB) showed no significant alterations. In the 3xTg mice, only CX showed an increase of LRRC25 protein by 91% (*p < 0.05) when compared to WT controls although the increased trend was noted in the other brain regions. In the AD patient brains also LRRC25 protein levels were increased by 153% (***p < 0.001) when compared to normal control (NC) subjects. Finally, LRRC25 expression in the iPSC-derived neurons quantified by immunofluorescence was increased by 181% (**p < 0.01) in AD-derived neurons when compared to NC-derived neurons. Thus increased LRRC25 protein in multiple models of AD suggests that LRRC25 may play a pathogenic role in either Aβ or tau pathology in AD. The mechanism for the increased levels of LRRC25 in AD is unknown at present, but a previous study showed that LRRC25 levels also increase during neonatal hypoxic-ischemia neuronal damage. Based on the evidence that autophagy is highly dysregulated in AD, the increased LRRC25 levels may be due to decreased autophagic degradation of LRRC25. Increased LRRC25 in turn may regulate the stability or activity of key enzymes involved in either Aβ or hyperphosphorylated tau generation and thus may contribute to increased plaques and neurofibrillary tangles

    Severe COVID19 Patients and a 3D Airway Tissue Model of SARS-CoV-2 Infection Express High Levels of Airway Mucins and Associated Immunomodulatory Long Noncoding RNAs

    No full text
    Background: Respiratory epithelial cells (RECs) lining the upper airways are primary entry-point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID19). Managing the overwhelming inflammatory response and mucus hypersecretion are among the major challenges faced in achieving effective treatment. The present study analyzes the acute inflammatory and mucous responses following SARS-CoV-2 infection. Methods: Nasal swabs from COVID19 patients with mild and severe pathologies were analyzed for the expression of viral RNA (vRNA) for nucleocapsid (N) and spike (S) proteins, viral entry regulating host factors (ACE-2 and TMPRSS-2), epithelial inflammatory factors (IL-6, ICAM-1 and CXCL-8), respiratory mucins (MUC1, 2, 4, 5AC, 5B, 7, 16 and 19), mucin regulatory transcription factors (SPDEF and FOXA3) and select long noncoding RNAs (lncRNAs) by qRT-PCR. Sub-cellular localization and association of lncRNAs and SARS-CoV-2 vRNA was depicted by Dual-fluorescence in situ hybridization (FISH), and immunostaining for epithelial cell markers. A 3D in-vitro cell culture model was developed using primary human RECs differentiated on transwells at air-liquid interface and were infected with a SARS-CoV-2 clinical isolate (USA-WI1/2020) via apical as well as basal regions. Samples were collected at 0, 1, 4, 24 and 48 h post-infection (p.i.) and the expression of aforementioned factors were analyzed in cell lysates and media. Results: Severely affected patients showed significantly higher expression of IL-6, ICAM-1, and CXCL-8 along with the respiratory mucins, MUC4, 5AC, 16, and 19 and the transcriptional regulators, SPDEF and FOXA3 compared to the mild COVID19 patients. Our recently identified novel lncRNAs, LASI (lncRNA on antisense strand to ICAM-1), and TOSL (TNFAIP3-opposite strand lncRNA) were significantly higher in severe patients whereas NEAT1 and MALAT1 levels were lower as were the ACE2 and TMPRSS2. SARS-CoV-2 clinical isolate productively infected 3D human REC model with highest expression of SARS-CoV-2 N vRNA at 24 h p.i., and showed increased expression of inflammatory factors and LASI and TOSL at 1 h p.i. The dual-FISH staining of LASI and SARS-CoV-2 N1 vRNA validated that both the transcripts were enriched in nuclear/perinuclear region of RECs and, club cells and MUC5AC+ cells of severe COVID19.Conclusions: Together, these data indicate that severely infected COVID19 patients are impacted by high respiratory mucin expression and the associated airway inflammation. Interestingly, the lncRNAs, LASI and TOSL showed associated increased expression suggesting a possible role for these innate immunomodulators in SARS-CoV-2 induced innate airway mucosal responses

    Corrigendum to “E-cigarette synthetic cooling agent WS-23 and nicotine aerosols differentially modulate airway epithelial cell responses” [Toxicol. Rep. 9 (2022) 1823–1830]

    No full text
    Electronic cigarette (e-cig) aerosol exposures are strongly associated with pulmonary dysfunctions, and the airway epithelial cells (AECs) of respiratory passages play a pivotal role in understanding this association. However, not much is known about the effect of synthetic cooling agents such as WS-23 on AECs. WS-23 is a synthetic menthol-like cooling agent widely used to enhance the appeal of e-cigs and to suppress the harshness and bitterness of other e-cig constituents. Using primary human AECs, we compared the effects of aerosolized WS-23 with propylene glycol/vegetable glycerin (PG/VG) vehicle control and nicotine aerosol exposures. AECs treated with 3 % WS-23 aerosols showed a significant increase in viable cell numbers compared to PG/VG-vehicle aerosol exposed cells and cell growth was comparable following 2.5 % nicotine aerosol exposure. AEC inflammatory factors, IL-6 and ICAM-1 levels were significantly suppressed by WS-23 aerosols compared to PG/VG-controls. When differentiated AECs were challenged with WS-23 aerosols, there was a significant increase in secretory mucin MUC5AC expression with no discernible change in airway inflammatory SCGB1A1 expression. Compared to PG/VG-controls, WS-23 or nicotine aerosols presented with increased MUC5AC expression, but there was no synergistic effect of WS-23 + nicotine combination exposure. Thus, WS-23 and nicotine aerosols modulate the AEC responses and induce goblet cell hyperplasia, which could impact the airway physiology and susceptibility to respiratory diseases

    Role of Non-Coding RNAs in Lung Circadian Clock Related Diseases

    No full text
    Circadian oscillations are regulated at both central and peripheral levels to maintain physiological homeostasis. The central circadian clock consists of a central pacemaker in the suprachiasmatic nucleus that is entrained by light dark cycles and this, in turn, synchronizes the peripheral clock inherent in other organs. Circadian dysregulation has been attributed to dysregulation of peripheral clock and also associated with several diseases. Components of the molecular clock are disrupted in lung diseases like chronic obstructive pulmonary disease (COPD), asthma and IPF. Airway epithelial cells play an important role in temporally organizing magnitude of immune response, DNA damage response and acute airway inflammation. Non-coding RNAs play an important role in regulation of molecular clock and in turn are also regulated by clock components. Dysregulation of these non-coding RNAs have been shown to impact the expression of core clock genes as well as clock output genes in many organs. However, no studies have currently looked at the potential impact of these non-coding RNAs on lung molecular clock. This review focuses on the ways how these non-coding RNAs regulate and in turn are regulated by the lung molecular clock and its potential impact on lung diseases

    Indoor-air purification by photoelectrochemical oxidation mitigates allergic airway responses to aerosolized cat dander in a murine model

    No full text
    Abstract Portable air purifiers help improve indoor air quality by neutralizing allergens, including animal dander proteins. However, there are limited in-vivo models to assess the efficacy of these devices. Here, we developed a novel animal model of experimental asthma using aerosolized cat dander extract (CDE) exposure and compared the efficacy of select air purification technologies. Mice were exposed to CDE aerosols for 6 weeks in separate custom-built whole-body exposure chambers equipped with either a photoelectrochemical oxidative (PECO) Molekule filtration device (PFD) or a HEPA-assisted air filtration device (HFD) along with positive (a device with no filtration capability) and negative controls. Compared to the positive control group, the CDE-induced airway resistance, and plasma IgE and IL-13 levels were significantly reduced in both air purifier groups. However, PFD mice showed a better attenuation of lung tissue mucous hyperplasia and eosinophilia than HFD and positive control mice, indicating a better efficacy in managing CDE-induced allergic responses. Cat dander protein destruction was evaluated by LCMS proteomic analysis, which revealed the degradation of 2731 unique peptides on PECO media in 1 h. Thus, allergen protein destruction on filtration media enhances air purifier efficacy that could provide relief from allergy responses compared to traditional HEPA-based filtration alone
    corecore