439 research outputs found
Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection
A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa
Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote
The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research
The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope
Measurements of the dark energy equation-of-state parameter, , have been
limited by uncertainty in the selection effects and photometric calibration of
Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is
designed to lower these uncertainties by creating a new sample of SNe
Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample
with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological
parameters with 1,338 SNe from a single telescope and a single, well-calibrated
photometric system. For the first time, both the low- and high- data are
predominantly discovered by surveys that do not target pre-selected galaxies,
reducing selection bias uncertainties. The data include 875 SNe without
spectroscopic classifications and we show that we can robustly marginalize over
CC SN contamination. We measure Foundation Hubble residuals to be fainter than
the pre-existing low- Hubble residuals by mag (stat+sys).
By combining the SN Ia data with cosmic microwave background constraints, we
find , consistent with CDM. With 463
spectroscopically classified SNe Ia alone, we measure . Using
the more homogeneous and better-characterized Foundation sample gives a 55%
reduction in the systematic uncertainty attributed to SN Ia sample selection
biases. Although use of just a single photometric system at low and high
redshift increases the impact of photometric calibration uncertainties in this
analysis, previous low- samples may have correlated calibration
uncertainties that were neglected in past studies. The full Foundation sample
will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.Comment: 30 pages, 17 figures, accepted by Ap
Kank Is an EB1 Interacting Protein that Localises to Muscle-Tendon Attachment Sites in Drosophila
Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells
The money or the trees: What drives landholders' participation in biodiverse carbon plantings?
Carbon farming programs typically aim to maximise landholder participation rates to achieve desired environmental outcomes. This is critical for programs aiming to tackle both climate change and biodiversity loss simultaneously, as landholder participation in those schemes directly determines the level of carbon sequestered and the potential biodiversity gains. Biodiverse carbon planting is a key private land conservation practice that needs active stakeholder involvement to deliver successful policy design and implementation. In this study we developed a Bayesian Belief Network (BBN) of landholder participation in biodiverse carbon planting schemes to determine factors most likely to influence program participation. An initial conceptual model was developed based on a review of the literature. The model was refined through interviews with participating landholders and other key stakeholders and, finally, parameterised using expert-elicited information. Our results indicate that participation rates are most influenced by program attractiveness and the identified values of co-benefits (such as biodiversity conservation) rather than financial incentives. Scenario evaluation revealed that providing a combination of biodiversity incentives with more flexible permanence options could increase the program adoption rate. Stacking or bundling credits combined with contract agreements is also likely to increase the participation rate. These findings can assist policy development by focusing on the aspects of policy design most likely to increase participation
Transverse Wave Propagation in Relativistic Two-fluid Plasmas in de Sitter Space
We investigate transverse electromagnetic waves propagating in a plasma in
the de Sitter space. Using the 3+1 formalism we derive the relativistic
two-fluid equations to take account of the effects due to the horizon and
describe the set of simultaneous linear equations for the perturbations. We use
a local approximation to investigate the one-dimensional radial propagation of
Alfv\'en and high frequency electromagnetic waves and solve the dispersion
relation for these waves numerically.Comment: 19 pages, 12 figure
Recommendations for the advancement of oil-in-water media and source oil characterization in aquatic toxicity test studies
During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.publishedVersio
Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.
Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
Ecological consequences of early Late Pleistocene megadroughts in tropical Africa
Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416β16421]. This resulted in extraordinarily low lake levels, even in Africa\u27s deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (\u3c400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an β125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (β35β15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa
- β¦