21 research outputs found
ΠΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠ΅ΡΡ Π½Π΅ΡΠ°Π»ΡΠΌΡΠΊΠΎΠ³ΠΎ Π½Π΅ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠ°ΡΠΎΡΠ°ΠΆΠ½ΡΡ ΠΊΡΠΈΠ²ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
Π¦Π΅Π»ΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°ΡΡ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΈΡ
Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. Π Π°Π±ΠΎΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π²Π²ΠΈΠ΄Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ, Π½ΠΎ ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π΄Π»Ρ ΡΠ°Π·Π½ΡΡ
Π·Π°Π΄Π°Ρ Π½Π΅ΡΡΡΠ½ΠΎΠΉ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ. ΠΠ°Π½Π½ΡΠΌ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈ, ΡΠ°ΠΊ ΠΈ Π½Π΅ΡΡΡΠ½ΠΈΠΊΠΈ-ΡΠ°Π·ΡΠ°Π±ΠΎΡΡΠΈΠΊΠΈ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π½Π°ΡΠ°Π±ΠΎΡΠΊΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π½ΠΎΠ²ΡΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΅ΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ.The aim of the work is to develop a methodology which can be used to zone deposits depending on their geological structure using machine learning algorithms. The work is relevant in view of the fact that the developed technique is not only a theoretical assumption, but also has the possibility of practical application for various tasks of the oil industry. This approach can be used by both geologists and oil engineer. The technique uses the latest developments in the field of machine learning, as well as completely new developed approaches that allow solving complex problems
Exploring the relationship between feature and perceptual visual spaces
The number and size of digital repositories containing visual information (images or videos) is increasing and thereby demanding appropriate ways to represent and search these information spaces. Their visualization often relies on reducing the dimensions of the information space to create a lower-dimensional feature space which, from the point-of-view of the end user, will be viewed and interpreted as a perceptual space. Critically for information visualization, the degree to which the feature and perceptual spaces correspond is still an open research question. In this paper we report the results of three studies which indicate that distance (or dissimilarity) matrices based on low-level visual features, in conjunction with various similarity measures commonly used in current CBIR systems, correlate with human similarity judgments