2 research outputs found

    Expression of type XIV collagen during the differentiation of fetal bovine skin: immunolabeling with monoclonal antibody is prominent in morphogenetic areas.

    Get PDF
    International audienceType XIV collagen belongs to the subclass of fibril-associated collagens with interrupted triple helices, which are composed of alternative triple helical and non-collagenous domains. Structural data show that these molecules interact with collagen fibrils and suggest that they might interact with cells. We have investigated the expression of type XIV collagen in bovine skin during development. Fetuses from 9 to 37 weeks were examined. Anti-type XIV collagen monoclonal antibody was produced, characterized, and used for immunofluorescence detection of the molecule. The localization of immunolabeling was analyzed by comparison with light and electron microscopic observations. In 9-week-old fetus, no type XIV collagen was found in the skin. From 19 weeks to birth, extensive immunofluorescence was observed on bundles of collagen fibrils in deep dermis. As shown by electron microscopy, this area exhibited bundles of collagen fibrils and cells with an abundant rough endoplasmic reticulum. In the upper dermis, a delicate fibrillar network of type XIV collagen was revealed by immunofluorescence around growing hair follicles at 19 and 24 weeks. Double labeling for type XIV collagen and fibronectin shows a more restricted pattern of expression of type XIV collagen in this area. The electron microscopic examination of skin of fetuses at these stages shows that the whole upper dermis is composed by a loose connective tissue containing scattered small bundles of collagen fibrils. Type XIV collagen was synthesized in the upper dermis between 24 weeks and birth. From this study, it appears that type XIV collagen expression is distinct from that of fibrillar collagens, at least during some developmental events. The prominent localization of type XIV collagen around growing hair follicles suggests a role for this molecule in epithelial-mesenchymal interactions.Type XIV collagen belongs to the subclass of fibril-associated collagens with interrupted triple helices, which are composed of alternative triple helical and non-collagenous domains. Structural data show that these molecules interact with collagen fibrils and suggest that they might interact with cells. We have investigated the expression of type XIV collagen in bovine skin during development. Fetuses from 9 to 37 weeks were examined. Anti-type XIV collagen monoclonal antibody was produced, characterized, and used for immunofluorescence detection of the molecule. The localization of immunolabeling was analyzed by comparison with light and electron microscopic observations. In 9-week-old fetus, no type XIV collagen was found in the skin. From 19 weeks to birth, extensive immunofluorescence was observed on bundles of collagen fibrils in deep dermis. As shown by electron microscopy, this area exhibited bundles of collagen fibrils and cells with an abundant rough endoplasmic reticulum. In the upper dermis, a delicate fibrillar network of type XIV collagen was revealed by immunofluorescence around growing hair follicles at 19 and 24 weeks. Double labeling for type XIV collagen and fibronectin shows a more restricted pattern of expression of type XIV collagen in this area. The electron microscopic examination of skin of fetuses at these stages shows that the whole upper dermis is composed by a loose connective tissue containing scattered small bundles of collagen fibrils. Type XIV collagen was synthesized in the upper dermis between 24 weeks and birth. From this study, it appears that type XIV collagen expression is distinct from that of fibrillar collagens, at least during some developmental events. The prominent localization of type XIV collagen around growing hair follicles suggests a role for this molecule in epithelial-mesenchymal interactions

    Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils.

    No full text
    International audienceWe have immunopurified and characterized a new glycoprotein of the extracellular matrix, using a monoclonal antibody obtained after immunization with fibril-associated collagens extracted from bovine tendon. In polyacrylamide gels, the protein migrates at about 350 kDa molecular mass. The protein is insensitive to bacterial collagenase, and no disulfide-linked aggregates could be detected; sugars were stained with periodic acid-Schiff's reagent. Amino acid analysis and sequencing of tryptic peptides failed to detect any similarity with known proteins. By rotary shadowing experiments, the protein was observed as flexible, unbranched structures, approximately 150 nm long, with a small globule at one end. Investigation of the tissue distribution of the protein in fetal bovine tissues by immunofluorescence resulted in labeling in extracellular matrices with loosely packed collagen fibrils, such as the peritendineum, embryonic skin and kidney glomeruli; cornea, cartilage matrix and bone were not labeled. Ultrastructural immunolocalization in dermis and in mesangium of glomeruli showed that the protein always occurred in the vicinity of collagen fibrils. In view of its tissue distribution and molecular shape, we postulate that this protein is important in the properties of the extrafibrillar environment. By reference to its shape as observed by rotary shadowing, we propose the name 'flexilin' for this extracellular matrix glycoprotein.We have immunopurified and characterized a new glycoprotein of the extracellular matrix, using a monoclonal antibody obtained after immunization with fibril-associated collagens extracted from bovine tendon. In polyacrylamide gels, the protein migrates at about 350 kDa molecular mass. The protein is insensitive to bacterial collagenase, and no disulfide-linked aggregates could be detected; sugars were stained with periodic acid-Schiff's reagent. Amino acid analysis and sequencing of tryptic peptides failed to detect any similarity with known proteins. By rotary shadowing experiments, the protein was observed as flexible, unbranched structures, approximately 150 nm long, with a small globule at one end. Investigation of the tissue distribution of the protein in fetal bovine tissues by immunofluorescence resulted in labeling in extracellular matrices with loosely packed collagen fibrils, such as the peritendineum, embryonic skin and kidney glomeruli; cornea, cartilage matrix and bone were not labeled. Ultrastructural immunolocalization in dermis and in mesangium of glomeruli showed that the protein always occurred in the vicinity of collagen fibrils. In view of its tissue distribution and molecular shape, we postulate that this protein is important in the properties of the extrafibrillar environment. By reference to its shape as observed by rotary shadowing, we propose the name 'flexilin' for this extracellular matrix glycoprotein
    corecore